Science, asked by Anonymous, 30 days ago

Let
f(x) =  \sqrt[3]{ {x}^{2} + 4x }  \\
And let \red g(x) be an Atiderivative of \red f(x) Then if \red g(5)=7
Find:
\red g(1)
 \\ \\ \\
Answer it correctly✔. Please don't spam!!

Answers

Answered by assingh
18

Correct Question :-

f(x)=\sqrt{x^2+4x}

g(x)=\displaystyle\int f(x)\:dx

g(5)=7

g(1)=?

Solution :-

Calculating g(x),

g(x)=\displaystyle\int f(x)\:dx

g(x)=\displaystyle\int \sqrt{x^2+4x}\:dx

g(x)=\displaystyle\int \sqrt{x^2+4x+4-4}\:dx

g(x)=\displaystyle\int \sqrt{(x+2)^2-2^2}\:dx

g(x)=\dfrac{x+2}{2}\sqrt{x^2+4x}-2\ln(x+2+\sqrt{x^2+4x})+C

\left(\because \displaystyle\int\sqrt{t^2-a^2}\:dt=\dfrac{t}{2}\sqrt{t^2-a^2}-\dfrac{a^2}{2}\ln (t+\sqrt{t^2-a^2})+C\right)

Calculating 'C' from g(5),

g(5)=\dfrac{5+2}{2}\sqrt{5^2+4(5)}-2\ln(5+2+\sqrt{5^2+4(5)})+C

g(5)=\dfrac{7}{2}\sqrt{25+20}-2\ln(7+\sqrt{25+20})+C

g(5)=\dfrac{7}{2}\sqrt{45}-2\ln(7+\sqrt{45})+C

7=\dfrac{21}{2}\sqrt{5}-2\ln(7+3\sqrt{5})+C

C=7-\dfrac{21}{2}\sqrt{5}+2\ln(7+3\sqrt{5})

Writing g(x),

g(x)=\dfrac{x+2}{2}\sqrt{x^2+4x}-2\ln(x+2+\sqrt{x^2+4x})+7-\dfrac{21}{2}\sqrt{5}+2\ln(7+3\sqrt{5})

Calculating g(1) from g(x),

g(1)=\dfrac{1+2}{2}\sqrt{1^2+4(1)}-2\ln(1+2+\sqrt{1^2+4(1)})+7-\dfrac{21}{2}\sqrt{5}+2\ln(7+3\sqrt{5})

g(1)=\dfrac{3}{2}\sqrt{5}-2\ln(3+\sqrt{5})+7-\dfrac{21}{2}\sqrt{5}+2\ln(7+3\sqrt{5})

g(1)=7+\dfrac{3}{2}\sqrt{5}-\dfrac{21}{2}\sqrt{5}+2\ln(7+3\sqrt{5})-2\ln(3+\sqrt{5})

g(1)=7-\dfrac{18}{2}\sqrt{5}+2\left(\ln(7+3\sqrt{5})-\ln(3+\sqrt{5})\right)

g(1)=7-9\sqrt{5}+2\ln\left(\dfrac{7+3\sqrt{5}}{3+\sqrt{5}}\right)

\left(\because \ln a-\ln b=\ln\dfrac{a}{b}\right)

g(1)=7-9\sqrt{5}+2\ln\left(\dfrac{1(3+\sqrt{5})^2}{2(3+\sqrt{5})}\right)

g(1)=7-9\sqrt{5}+2\ln\left(\dfrac{3+\sqrt{5}}{2}\right)

Answer :-

\underline{\boxed{g(1)=7-9\sqrt{5}+2\ln\left(\dfrac{3+\sqrt{5}}{2}\right)}}

Similar questions