Math, asked by trumph12, 1 month ago

Let:-
 \int \frac{dx}{ {x}^{2008}  + x} =  \frac{1}{p}   ln(  \frac{{x}^{q}}{1 +  {x}^{r} }  )  + c
Find p+q+r ​

Answers

Answered by Fieldmarshal
1

The appearance can be converted as follows:-

\LARGE \int \frac{dx}{x( {x}^{n} + 1) }  =  \frac{1}{n}  \int \frac{n. {x}^{n - 1} dx}{{x}^{n - 1 }x( {x}^{n} + 1) }

Now call  x^n=t

 nx^{n-1}dx=dt

   : \rightarrow \:  \: \LARGE \:  \frac{1}{n} \int \frac{dt}{ {x}^{n} ( {x}^{n} + 1) }

: \rightarrow \:  \:  \LARGE \:  \frac{1}{n} \int \frac{dt}{ t ( t + 1) }

: \rightarrow \:  \:   \LARGE \:  \frac{1}{n} (\int \frac{dt}{ t  } -    \int \frac{dt}{( t   + 1)})

 :  \rightarrow \:  \:  \: \LARGE  \mathtt{\frac{1}{n}( ln |t|   -  (ln( |t + 1|  + c  ) }

We substituted  x^n=t now putting value of  t \: as \: x^n .

 :  \rightarrow \:  \:  \: \LARGE \mathtt{\frac{1}{n}( ln | {x}^{n} |   -  (ln( | {x}^{n}+ 1|  + c  ) }

 :  \rightarrow \:  \:  \: \LARGE \frac{1}{n}( ln |  \frac{{x}^{n}}{{x}^{n} + 1}  |    + c  )

And we know that  {x}^{n} = x^{2007}

Hence n is 2007

By comparing with the equation given in equation we get p,q,r=2007

Hence p+q+r=\boxed{6021}

Similar questions