Math, asked by ITZBFF, 1 month ago

Let  \omega be a complex number such that  2 \omega + 1 = z , where  z = \sqrt{-3}. If \  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ [tex] \left | \begin{array}{ccc} 1 & 1 & 1 \\ 1 & - {\omega}^{2} -1 & {\omega}^{2} \\ 1 & {\omega}^{2} & {\omega}^{7} \end{array} \right | = 3k, then k is equal to​

Answers

Answered by ApprenticeIAS
62

 \underline{ \underline{ \sf \red{Question}}} \red{: }

Let  \omega be a complex number such that  2 \omega + 1 = z , where  z = \sqrt{-3} . If  \left | \begin{array}{ccc} 1 & 1 & 1 \\ 1 & - {\omega}^{2} -1 & {\omega}^{2} \\ 1 & {\omega}^{2} & {\omega}^{7} \end{array} \right | = 3k, then k is equal to

 \underline{ \underline{ \sf \red{Answer}}} \red{: }

 \rm \: Given

 \rm \: 2 \omega + 1 = z

 \rm \implies \: 2 \omega + 1 =  \sqrt{ - 3}  \:   \:  \:  \:  \: \:  \: [ \because \: z \:  =  \:  \sqrt{ - 3}  ]

 \rm \implies \omega =  \dfrac{ - 1 +  \sqrt{3}  \: i}{2}  \\

 \rm \: Since, \: \omega \: is \: cube \: root \: of \: unity

 \rm \therefore \:    { \omega}^{2}  =  \dfrac{ - 1 -  \sqrt{3} \: i }{2}  \:  \:  \: and \:  \:   { \omega}^{3n}  = 1 \\

 \rm \: Now, \left | \begin{array}{ccc} 1 & 1 & 1 \\ 1 & - {\omega}^{2} -1 & {\omega}^{2} \\ 1 & {\omega}^{2} & {\omega}^{7} \end{array} \right | \:  = 3k

 \rm \implies \: \left | \begin{array}{ccc} 1 & 1 & 1 \\ 1 &  \omega & {\omega}^{2} \\ 1 & {\omega}^{2} & \omega\end{array} \right | \:  = 3k  \\ \\  \rm [  \because \: 1 +  \omega  +  { \omega}^{2}  = 0 \: and \: \:   { \omega}^{7}  =  { ({ \omega}^{3} )}^{2}. \omega \:  =  \omega ]

 \rm \: On \:  applying \:  \:   \sf\red{  R_1 \longrightarrow R_1 + R_2 + R_3,}  \: We \:  get

 \rm \left | \begin{array}{ccc} 3 & 1 +  \omega +  { \omega}^{2}  & 1 +  \omega +  { \omega}^{2}  \\ 1 & \omega & {\omega}^{2} \\ 1 & {\omega}^{2} & \omega \end{array} \right | \:  = 3k \\

 \implies \rm \left | \begin{array}{ccc} 3 & 0 & 0  \\ 1 & \omega & {\omega}^{2} \\ 1 & {\omega}^{2} & \omega \end{array} \right | \:  = 3k \\

  \rm\implies \: 3( { \omega}^{2}  -  { \omega}^{4} ) = 3k

 \rm \implies \: ( { \omega}^{2}  -  \omega) = k

 \rm \therefore \: k \:  =  \bigg( \dfrac{ - 1 -  \sqrt{3}  \: i}{2}  \bigg) -  \bigg( \dfrac{ - 1 +  \sqrt{3} \: i }{2}  \bigg)

 \rm \implies \: k   =  \sqrt{3}  \: i

 \boxed{ \boxed{ \rm  k =  - z}} \\

Answered by Anonymous
1

Answer:

 \omega be a complex number such that  2 \omega + 1 = z , where  z = \sqrt{-3}. If \ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ [tex] \left | \begin{array}{ccc} 1 & 1 & 1 \\ 1 & - {\omega}^{2} -1 & {\omega}^{2} \\ 1 & {\omega}^{2} & {\omega}^{7} \end{array} \right |

Similar questions