Math, asked by sajan6491, 2 days ago

Let  \rm{P(x)} be a nonzero polynomial such that \rm (x-1)P(x+1)=(x+2)P(x) for every real x, and   \rm{(P(2) {)}^{2} =P(3).  } Then  \rm P( \frac{7}{2} ) =  \frac{m}{n} , where m and n are relatively prime positive integers. Find m+n.​

Answers

Answered by pradhanmadhumita2021
5

P(x) is non –zero polynomial and P(1+x)=P(1−x) for all x

Differentiate w.r.t x

P(1+x)=−P(1−x)

Put x=0,P(1)=−P(1)

⇒P(1)+P(1)=0

⇒2P′(1)=0

⇒P(1)=0

andP(1)=0⇒P(x) touches the x− axis at x=1

⇒P(x)=(x−1)²Q(x)

⇒m=2 such that (x−1)m divides P(x) for all such P(x)

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that, P(x) be a non zero polynomial, such that

\rm \: (x-1)P(x+1)=(x+2)P(x) -  -  - (i) \\

On substituting x = 1, we get

\rm \: (1-1)P(1+1)=(1+2)P(1) \\

\rm \: 3P(1) = 0 \\

 \red{\rm\implies \:P(1) = 0 \: } \\

\red{\rm\implies \:x - 1 \: is \: a \: factor \: of \: P(x) \: } \\

On substituting x = 0, we get

\rm \: (0-1)P(0+1)=(0+2)P(0) \\

\rm \:  - P(1) = 2P(0) \\

\rm \:  0 = 2P(0) \\

 \red{\rm\implies \:P(0) = 0 \: } \\

\red{\rm\implies \:x \: is \: a \: factor \: of \: P(x) \: } \\

On substituting x = - 1, we get

\rm \: ( - 1-1)P( - 1+1)=( - 1+2)P( - 1) \\

\rm \: P( - 1) =  - 2P(0) \\

 \red{\rm\implies \:P( - 1) = 0 \: } \\

\red{\rm\implies \:x + 1 \: is \: a \: factor \: of \: P(x) \: } \\

On substituting x = 2, we get

 \green{\rm \: (2-1)P(2+1)=(2+2)P(2)} \\

 \green{\rm \: P(3)=4P(2)} \\

 \green{\rm \:  {[P(2)]}^{2} =4P(2)} \\

 \green{\rm \:  {[P(2)]}^{2} - 4P(2) = 0} \\

 \green{\rm \:  P(2)[P(2) - 4] = 0} \\

 \green{\rm \:  P(2) = 0 \:  \: or \:  \:  \: P(2) - 4 = 0} \\

 \green{\rm \:  P(2) = 0 \:  \{rejected \} \:  \: or \:  \:  \: P(2)  = 4} \\

Now, from above 3 conditions, we concluded that

\rm \: P(x) = (x - 1)x(x + 1)f(x) -  -  - (1) \\

Replace x by x + 1, we get

\rm \: P(x + 1) = x(x + 1)(x + 2)f(x + 1)  \\

On multiply by x - 1, we get

\rm \: (x - 1)P(x + 1) = x(x + 1)(x + 2)(x - 1)f(x + 1)  \\

From given equation (i),

\rm \: (x + 2)P(x) = x(x + 1)(x + 2)(x - 1)f(x + 1)  \\

\rm \: P(x) = x(x + 1)(x - 1)f(x + 1)  \\

From equation (1), we have

\rm \: x(x + 1)(x - 1)f(x) = x(x + 1)(x - 1)f(x + 1)  \\

\rm\implies \:f(x) = f(x + 1) \\

\rm\implies \:f(x)  \: is \: constant \\

Let f(x) = c, where c is constant.

So, equation (1) can be rewritten as

\rm \: P(x) = (x - 1)x(x + 1)c -  -  - (2) \\

On substituting x = 3, we get

\rm \: P(3) = (3 - 1)3(3 + 1)c \\

\rm \: 16 = 24c \\

\rm\implies \:c = \dfrac{2}{3}  \\

So, equation (2) can be rewritten as

\rm \: P(x) =  \frac{2}{3} (x - 1)x(x + 1) -  -  - (3) \\

Now,

\rm \: P\bigg(\dfrac{7}{2} \bigg)  =  \frac{2}{3} \bigg(\dfrac{7}{2} - 1 \bigg)\bigg(\dfrac{7}{2} \bigg)\bigg(\dfrac{7}{2} + 1 \bigg) \\

\rm \: P\bigg(\dfrac{7}{2} \bigg)  =  \frac{2}{3} \bigg(\dfrac{5}{2} \bigg)\bigg(\dfrac{7}{2} \bigg)\bigg(\dfrac{9}{2} \bigg) \\

\rm \: P\bigg(\dfrac{7}{2} \bigg)  =  \frac{105}{4} \\

\rm\implies \:m  \: =  \: 105 \:  \: and \:  \: n \:  =  \: 4 \\

 \red{\rm\implies \boxed{ \rm{ \:\:m  + n \: =  \: 105  + 4 = 109}  \:  \: }}\\

Similar questions