Math, asked by aryan021212, 22 days ago

Let

 s_{1}= 1 +  \frac{1}{2}  +  \frac{1}{3}  +  -  -  +  \frac{1}{n}

and

 s_{2}=  \frac{n + 1}{2} -   \frac{1}{n(n - 1)} - \frac{2}{(n - 1)(n - 2)}   -   -  -   -  \frac{n - 2}{3.2}

Prove that

 s_{2}=  s_{1}

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given that,

\rm \: s_1 = 1 + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  -  + \dfrac{1}{n}  \\

and

\rm \: s_{2}= \frac{n + 1}{2} - \frac{1}{n(n - 1)} - \frac{2}{(n - 1)(n - 2)} - - - \frac{n - 2}{3.2} \\

Now, Consider

\rm \: s_{2}= \frac{n + 1}{2} - \frac{1}{n(n - 1)} - \frac{2}{(n - 1)(n - 2)} - - - \frac{n - 2}{3.2} \\

can be rewritten as

\rm \: s_{2}= \frac{n + 1}{2} +  \bigg[\frac{ - 1}{n(n - 1)}  +  \frac{ - 2}{(n - 1)(n - 2)} - -  + \frac{ - (n - 2)}{3.2}\bigg] \\

Now, Consider

\rm \:  \frac{ - 1}{n(n - 1)}  \\

can be rewritten as

\rm \: =  \:   \frac{n - 1 - n}{n(n - 1)}  \\

\rm \: =  \:   \frac{n - 1}{n(n - 1)} -  \frac{n}{n(n - 1)}   \\

\rm \: =  \:  \frac{1}{n} -  \frac{1}{n - 1}  \\

Now, Consider

\rm \:  \frac{ - 2}{(n - 1)(n - 2)} \\

can be rewritten as

\rm \: =  \:   - 2\bigg(\frac{1}{(n - 1)(n - 2)}\bigg) \\

\rm \: =  \:   - 2\bigg(\frac{2 - 1}{(n - 1)(n - 2)}\bigg) \\

\rm \: =  \:   - 2\bigg(\frac{2 - 1 + n - n}{(n - 1)(n - 2)}\bigg) \\

\rm \: =  \:   - 2\bigg(\frac{(n - 1) - (n - 2)}{(n - 1)(n - 2)}\bigg) \\

\rm \: =  \:  - 2\bigg( \frac{1}{n - 1} -  \frac{1}{n - 2}\bigg) \\

\rm \: =  \:   \frac{ - 2}{n - 1} + \frac{2}{n - 2} \\

.

.

.

.

.

.

Now, Consider

\rm \:  \frac{ - (n - 2)}{3.2} \\

\rm \: =  \:   \frac{ - (3n - 2n - 2)}{3.2} \\

\rm \:   =  \: \frac{ - (3n - 2n - 6 + 4)}{3.2} \\

\rm \: =  \:  - \bigg( \frac{ 3(n - 2) - 2(n - 2)}{3.2}\bigg) \\

\rm \: =  \:    \frac{  - 3(n - 2)  +  2(n - 2)}{3.2} \\

\rm \: =  \:  -  \frac{n - 2}{2} +  \frac{n - 2}{3}  \\

So, on substituting all these values in above expression, we get

\rm \:  =  \frac{n + 1}{2} + \bigg( \frac{1}{n} -  \frac{1}{n - 1}  \bigg)  + \bigg( \frac{2}{n - 1} -  \frac{2}{n - 2} \bigg)+  -  -  +\bigg( \frac{n - 2}{3} -  \frac{n - 2}{2} \bigg) \\

\rm \:  =  \frac{n + 1}{2} + \bigg( \frac{1}{n} + \frac{1}{n - 1}   + \frac{ 1 }{n - 2} +  -  -  + \frac{1}{3} -  \frac{n - 2}{2} \bigg) \\

\rm \: = \frac{1}{n} + \frac{1}{n - 1}   + \frac{1}{n - 2} +  -  -  + \frac{1}{3}  +  \frac{n + 1}{2} -  \frac{n - 2}{2}\\

\rm \: = \frac{1}{n} + \frac{1}{n - 1}   + \frac{1}{n - 2} +  -  -  + \frac{1}{3}  +  \frac{n + 1 - n + 2}{2} \\

\rm \: = \frac{1}{n} + \frac{1}{n - 1}   + \frac{1}{n - 2} +  -  -  + \frac{1}{3}  +  \frac{1+ 2}{2} \\

\rm \: = \frac{1}{n} + \frac{1}{n - 1}   + \frac{1}{n - 2} +  -  -  + \frac{1}{3}  +  \frac{1}{2}  +  \frac{2}{2} \\

\rm \: = \frac{1}{n} + \frac{1}{n - 1}   + \frac{1}{n - 2} +  -  -  + \frac{1}{3}  +  \frac{1}{2}  +  1 \\

can be rewritten as

\rm \:  = 1 + \dfrac{1}{2}  + \dfrac{1}{3}  +  -  -  -  + \dfrac{1}{n}  \\

\rm \: =  \: s_1

Hence,

\rm\implies \:\boxed{ \pmb\sf\:s_1 = s_2 \:  \: } \\

Similar questions