Math, asked by AestheticSky, 3 months ago

let :-
\sf f_{p}(\beta) = \bigg(\cos\dfrac{\beta}{p^{2} } +i\sin\dfrac{\beta}{p^{2} } \bigg)+\bigg(\cos\dfrac{2\beta}{p^{2} } +i\sin\dfrac{2\beta}{p^{2} } \bigg)\: .\:.\:. \: \bigg(\cos\dfrac{\beta(p-1)}{p^{2} }+i \sin\dfrac{\beta(p-1)}{p^{2} } \bigg)+\bigg(\cos\dfrac{\beta}{p} +i \sin\dfrac{\beta}{p} \bigg)

Then Evaluate the following:-
\bullet\quad\displaystyle\sf \lim_{x \to \infty} \dfrac{1}{f_n(\pi)}

Answers

Answered by ajr111
60

Answer:

0

Step-by-step explanation:

Given Question :

Let : -

\mathrm{f_p(\beta) = \bigg(\cos\dfrac{\beta}{p^2}+ i\sin \dfrac{\beta}{p^2}\bigg) + \bigg(\cos\dfrac{2\beta}{p^2}+ i\sin \dfrac{2\beta}{p^2}\bigg) +... + }\\ \mathrm{ \bigg(\cos\dfrac{(p-1)\beta}{p^2}+ i\sin \dfrac{(p-1)\beta}{p^2}\bigg) + \bigg(\cos\dfrac{\beta}{p}+ i\sin \dfrac{\beta}{p}\bigg)}

To find :

(Corrected part - It should be 'n' in place of 'x')

\mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{1}{f_n(\pi)}}

Solution :

Given function :

\longmapsto \mathrm{f_p(\beta) = \bigg(\cos\dfrac{\beta}{p^2}+ i\sin \dfrac{\beta}{p^2}\bigg) + \bigg(\cos\dfrac{2\beta}{p^2}+ i\sin \dfrac{2\beta}{p^2}\bigg) +... + }\\ \mathrm{ \bigg(\cos\dfrac{(p-1)\beta}{p^2}+ i\sin \dfrac{(p-1)\beta}{p^2}\bigg) + \bigg(\cos\dfrac{\beta}{p}+ i\sin \dfrac{\beta}{p}\bigg)}

We know that, from Euler's form,

\boxed{\mathrm{cosx + isinx = e^{ix}}}

Here, we have

\mathrm{\dfrac{\beta}{p^2}, \dfrac{2\beta}{p^2}, ...,\dfrac{(p-1)\beta}{p^2}, \dfrac{\beta}{p}} \text{ in place of x}

So, this can be written as

\implies \large{\text{$\mathrm{f_p(\beta) = e^{\frac{i\beta}{p^2}}+ e^{\frac{2i\beta}{p^2}} + ... + e^{\frac{(p-1)i\beta}{p^2}}+ e^{\frac{i\beta}{p}}}$}}

this is of the form of sum of definite GP with common ratio \large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}}

We know that, Sum of definite G.P. is,

\boxed{\mathrm{Sum_{GP} = \dfrac{a(r^n-1)}{r-1}}}

  • a = first term
  • r = common ratio
  • n = number of terms in the sum

Here,

\mathrm{a = \large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}} ; r = \large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}}; n = p}

So, applying the sum formula we get

\implies \mathrm{f_p(\beta)} = \large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}} \mathrm{\times \dfrac{\bigg(\Big(\large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}}\Big)^p -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}} - 1\bigg)}}

\implies \mathrm{f_p(\beta)} = \large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}} \mathrm{\times \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\beta}{p}}}$}} -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\beta}{p^2}}}$}} - 1\bigg)}}

Now, Replacing n in place of p and π in place of β

\implies \mathrm{f_n(\pi)} = \large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} \mathrm{\times \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} - 1\bigg)}}

Asked equation is :

\longmapsto \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{1}{f_n(\pi)}} = \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{1}{\Bigg( \large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} \mathrm{\times \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} - 1\bigg)}}\Bigg)}}

\implies \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} -1\bigg)}{\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} \times \bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} - 1\bigg)}}

Separating the denominators into limits, we get,

\implies \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{1}{\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}}} \times \lim \limits_{n \rightarrow \infty} \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} - 1\bigg)}}

Executing the limit in first term, we get,

\implies \mathrm{\dfrac{1}{\mathrm{e^0}} \times \lim \limits_{n \rightarrow \infty} \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} - 1\bigg)}}

We know that e⁰ = 1, so,

\implies \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} -1\bigg)}{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} - 1\bigg)}}

We know that,

\boxed{\mathrm{\lim \limits_{x \rightarrow 0} \dfrac{e^x - 1}{x} = 1}}

So, multiplying the numerator and denominator with iπ/n and iπ/n²

\implies \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n^2}}}$}} -1\bigg)}{\dfrac{i\pi}{n^2}}\times \dfrac{\dfrac{i\pi}{n}}{\bigg(\large{\text{$\mathrm{e^{\frac{i\pi}{n}}}$}} - 1\bigg)}\times \dfrac{\bigg(\dfrac{i\pi}{n^2}\bigg)}{\bigg(\dfrac{i\pi}{n}\bigg)}}

\implies \mathrm{\lim \limits_{n \rightarrow \infty} 1 \times 1\times \dfrac{\bigg(\dfrac{i\pi}{n^{\not{2}}}\bigg)}{\bigg(\dfrac{i\pi}{\not{n}}\bigg)} }

\implies \mathrm{\lim \limits_{n \rightarrow \infty} \dfrac{1}{n}}

\implies \mathrm{\dfrac{1}{\infty}}

\implies \underline{\underline{\Large{\text{0}}}}

\therefore \underline{\boxed{\mathbf{\lim \limits_{n \rightarrow \infty} \dfrac{1}{f_n(\pi)}} = \large{\textbf{0}}}}

Hope it helps!!


Anonymous: Awesome!
Answered by Anonymous
1

Given Expression :-

  \\  \quad \bullet \quad  \sf \bigg(\dfrac{x}{y} \bigg)^{a-b} \times \bigg( \dfrac{y}{z}  \bigg)^{b-c} \times \bigg( \dfrac{z}{x}  \bigg)^{c-a} \\

We know that :-

 \\  \quad \mapsto \quad \boxed{ \frak{ \bigg(\dfrac{a}{b} \bigg) ^{c - d} =  \dfrac{ {a}^{c} }{ {b}^{d} } }  } \bigstar \\

Calculation :-

  \\  \quad \longrightarrow \quad  \sf \bigg(\dfrac{x}{y} \bigg)^{a-b} \times \bigg( \dfrac{y}{z}  \bigg)^{b-c} \times \bigg( \dfrac{z}{x}  \bigg)^{c-a} \\

  \\  \quad \longrightarrow \quad  \sf \dfrac{ {x}^{a} }{ {y}^{b} }  \times  \dfrac{ {y}^{b} }{ {z}^{c} }   \times \dfrac{ {z}^{c} }{ {x}^{a} }   \\

 \\  \quad \therefore \quad \boxed{ \frak{1}} \bigstar \\

_________________________

Similar questions