Math, asked by AdorableMe, 9 months ago

Let \sf{\sum\limits_{m=1}^\infty}y^{2m-1}=1} and y = 2 cosθ. If least value of cosθ is of the form \sf{\dfrac{\sqrt{a}-b}{c} } (where a is a prime number), then the value of (a + c - b) is? Class 11 ↑ DON'T SPAM ✖

Answers

Answered by Rajshuklakld
45

Basic question of series

Solution:- According to question

y+y^3+y^5+y^7+.........+y^(infinite)=1

take y common from LHS

y{1+y^2+y^4+y^6+.......+y^(infinite)}=1

y[1+{y^2+y^4+y^6+.......+y^(infinite)}]=1

we know that sum of infinite terms of GP=a/(1-r)

y(1+y^2/1-y^2)=1

y(1-y^2+y^2)/(1-y^2)=1

y/(1-y^2)=1

y=1-y^2

y^2+y-1=0

y={-1+-(1+4)^1/2}/2 (using quadratic rule)

y=(√5-1)/2 or (-√5-1)/2

putting y=2cos∅ we get

2cos∅=(√5 -1)/2

cos∅=(√5-1)/4

also it is given that cos∅=(√a -b)/c

so

(√a-b)/c=(√5-1)/4

comparing both side we get

a=5, b=1 and c=4

now,

a+c-b=5+4-1=8

This will be in the case of maximum value

In case of minimum value

2cos∅=(-√5-1)/2

cos∅=(√5+1)/-4

comparing this value with (√a -b)/c

a=5, b=-1 and c=-4

a+b-c=5-(-4)-(-1)=2

Answered by BrainlyPopularman
55

GIVEN :

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: \sf{\sum\limits_{m=1}^\infty}y^{2m-1}=1 \\

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: y=2 \cos( \theta)  \\

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: Least \:  \: value \:  \: of \:  \:  \cos \theta \:\:is  = {\dfrac{\sqrt{a}-b}{c} }\\

TO FIND :

• Value of (a + c - b) = ?

SOLUTION :

 \\  \implies \sf{\sum\limits_{m=1}^\infty}(y)^{2m-1}=1 \\

• We should write this as –

 \\  \implies \sf y +  {y}^{3} +  {y}^{5}   + ........ \infty =1 \\

• It's a G.P. series And we know that sum of infinite G.P. is –

 \\  \dashrightarrow  \large{ \boxed{ \sf sum =  \dfrac{a}{(1  - r)}}}\\

• Here –

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: a=y \\

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: r= {y}^{2}  \\

• So that –

 \\  \implies \sf  \dfrac{y}{1 -  {y}^{2} }  =1 \\

 \\  \implies \sf  y = 1 -  {y}^{2}  \\

 \\  \implies \sf  {y}^{2}  + y  - 1 = 0 \\

• We can find the value of 'y' by using quadratic formula –

 \\  \implies \sf  y =  \dfrac{ - (1) \pm \sqrt{ {(1)}^{2}  - 4(1)( - 1)} }{2(1)}  \\

 \\  \implies \sf  y =  \dfrac{ - 1 \pm \sqrt{1+ 4} }{2}  \\

 \\  \implies \sf  y =  \dfrac{ - 1 \pm \sqrt{5} }{2}  \\

• Hence , Least value of 'cosθ' is –

 \\  \implies \sf  2 \cos \theta =  \dfrac{ - 1  - \sqrt{5} }{2}  \\

• We should write this as –

 \\  \implies \sf  \cos \theta  =  \dfrac{ \sqrt{5} + 1 }{ - 4}  \\

• Now compare –

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: a=5 \\

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: b=-1 \\

 \\  \:  \:  \: {\huge{.}} \sf  \:  \:  \: c=-4 \\

• So that –

 \\  \sf \implies a + c - b=5 + ( - 4) - ( - 1) \\

 \\  \sf \implies a + c - b=5 - 4 + 1 \\

 \\\implies \large{ \boxed{ \sf a + c - b=2}}\\


Anonymous: Splendid :claps:
Similar questions