Math, asked by saryka, 3 months ago

⠀⠀
Let \sf{\vec{r},\vec{a},\vec{b} and \sf{\vec{c}} be four non-zero vectors such that \vec{r}\cdotp\vec{a} = 0, \sf{|\vec{r}\times\vec{b}|=|\vec{r}||\vec{b}|, |\vec{r}\times\vec{c}|=|\vec{r}||\vec{c}|}, then find [a b c].

(1) |a| |b| |c|
(2) -|a| |b| |c|
(3) 0
(4) None​

Answers

Answered by assingh
114

Topic :-

Vectors

Given :-

\overrightarrow{r},\overrightarrow{a},\overrightarrow{b}\:and\:\overrightarrow{c}\:are\:four\:non-zero\:vectors\:such\:that:-

\overrightarrow{r}\cdot\overrightarrow{a}=0

|\overrightarrow{r}\times\overrightarrow{b}|=|\overrightarrow{r} ||\overrightarrow{b} |

|\overrightarrow{r}\times\overrightarrow{c}|=|\overrightarrow{r} ||\overrightarrow{c} |

To Find :-

Value\:of\:[\overrightarrow{a}\:\:\overrightarrow{b}\:\:\overrightarrow{c}].

Solution :-

Let \:us\:assume\:that\:angle\:between\:\overrightarrow{r}\:and\:\overrightarrow{a}\:is\:\alpha,

angle\:between\:\overrightarrow{r}\:and\:\overrightarrow{b}\:is\:\beta\:and\:angle\:between\:\overrightarrow{r}\:and\:\overrightarrow{c}\:is\:\gamma.

\overrightarrow{r}\cdot\overrightarrow{a}=|\overrightarrow{r}||\overrightarrow{a}|\cos \alpha

0=|\overrightarrow{r}||\overrightarrow{a}|\cos \alpha

0=\cos \alpha

\boxed{\alpha=90^{\circ}}

|\overrightarrow{r}\times\overrightarrow{b}|=|\overrightarrow{r} ||\overrightarrow{b} |\sin\beta

|\overrightarrow{r} ||\overrightarrow{b} |=|\overrightarrow{r} ||\overrightarrow{b} |\sin\beta

1=\sin\beta

\boxed{\beta=90^{\circ}}

|\overrightarrow{r}\times\overrightarrow{c}|=|\overrightarrow{r} ||\overrightarrow{c} |\sin\gamma

|\overrightarrow{r} ||\overrightarrow{c} |=|\overrightarrow{r} ||\overrightarrow{c} |\sin\gamma

1=\sin\gamma

\boxed{\gamma=90^{\circ}}

\overrightarrow{a},\overrightarrow{b}\:and\:\overrightarrow{c}\:are\:perpendicular\:with\:\overrightarrow{r}\:which\:means

all\:three\:vectors\:will\:lie\:on\:same\:plane.

\because\:[\overrightarrow{x}\:\:\overrightarrow{y}\:\:\overrightarrow{z}]=0,if\:\overrightarrow{x},\overrightarrow{y}\:and\:\overrightarrow{z}\:are\:coplanar.

\therefore\:[\overrightarrow{a}\:\:\overrightarrow{b}\:\:\overrightarrow{c}]=0,as\:\overrightarrow{a},\overrightarrow{b}\:and\:\overrightarrow{c}\:are\:coplanar.

Answer :-

[\overrightarrow{a}\:\:\overrightarrow{b}\:\:\overrightarrow{c}]=0

Hence,\bold{option\:3}\:is\:correct\:option.

Similar questions