Math, asked by saryka, 3 months ago

Let \sf{\vec{r},\vec{a},\vec{b} and \sf{\vec{c}} be four non-zero vectors such that \vec{r}\cdotp\vec{a} = 0, [tex]\sf{|\vec{r}\times\vec{b}|=|\vec{r}||\vec{b}|, |\vec{r}\times\vec{c}|=|\vec{r}||\vec{c}|}} , then find [a b c].

(1) |a| |b| |c|
(2) -|a| |b| |c|
(3) 0
(4) None​

Answers

Answered by mathdude500
46

\large\underline{\sf{Given- }}

\rm :\longmapsto\: |\vec{r}|  \ne \: 0

\rm :\longmapsto\: |\vec{a}|  \ne \: 0

\rm :\longmapsto\: |\vec{b}|  \ne \: 0

\rm :\longmapsto\: |\vec{c}|  \ne \: 0

Also, Given that,

\rm :\longmapsto\:\vec{r} \: . \: \vec{a} = 0

\bf\implies \:\vec{r} \:  \perp \: \vec{a} -  -  - (1)

Again,

\rm :\longmapsto\: |\vec{r} \times \vec{b}| =  |\vec{r}| |\vec{b}|

can be rewritten as

\rm :\longmapsto\: |\vec{r} \times \vec{b}| =  |\vec{r}| |\vec{b}| \times 1

\rm :\longmapsto\: |\vec{r} \times \vec{b}| =  |\vec{r}| |\vec{b}|sin \dfrac{\pi}{2}

\rm :\implies\:Angle \: between \: \vec{r} \: and \: \vec{b} \: is \: \dfrac{\pi}{2}

\bf\implies \:\vec{r} \:  \perp \: \vec{b} -  -  - (2)

Again,

\rm :\longmapsto\: |\vec{r} \times \vec{c}| =  |\vec{r}| |\vec{c}|

can be rewritten as

\rm :\longmapsto\: |\vec{r} \times \vec{c}| =  |\vec{r}| |\vec{c}| \times 1

\rm :\longmapsto\: |\vec{r} \times \vec{c}| =  |\vec{r}| |\vec{c}|sin \dfrac{\pi}{2}

\rm :\implies\:Angle \: between \: \vec{r} \: and \: \vec{c} \: is \: \dfrac{\pi}{2}

\bf\implies \:\vec{r} \:  \perp \: \vec{c} -  -  - (3)

Now, from equation (1), (2) and (3), we concluded that

\rm :\longmapsto\:\vec{a}, \: \vec{b}, \: \vec{c} \: are \: coplanar

Using scalar triple product,

\bf\implies \:\bigg[ \vec{a} \:  \:  \:  \: \vec{b} \:  \:  \:  \: \vec{c}\bigg] = 0

Hence,

  • ★ Option 3 is correct

Additional Information :-

\boxed{ \sf{ \: \bigg[\vec{a} \: \vec{b} \: \vec{c} \bigg] = \vec{a}. \: (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}). \: \vec{c}}}

\boxed{ \sf{ \: \bigg[\vec{a} \: \vec{b} \: \vec{c} \bigg] =  -  \: \bigg[ \vec{b} \: \vec{a} \: \vec{c}\bigg]}}

\boxed{ \sf{ \: \bigg[\vec{a} \: \vec{b} \: \vec{c} \bigg] =  0 \:  \implies \: \vec{a}, \: \vec{b}, \: \vec{c} \: are \: coplanar}}

\boxed{ \sf{ \: \bigg[\vec{a} \: \vec{a} \: \vec{c} \bigg] =  0 \: }}

\boxed{ \sf{ \:  |\vec{a} \times \vec{b}|  =  |\vec{a}|  |\vec{b}|  \: sin \theta}}

\boxed{ \sf{ \:  \vec{a} \: . \: \vec{b} =  |\vec{a}|  |\vec{b}|  \: cos \theta}}

Similar questions