LET THE BRAINLY ONE ANSWER :-
find all the angles between 0 and 360 which satisfy the equation sin^2theta=3/4?
Answers
Answer:
SOLUTION
TO DETERMINE
All the angles θ where 0° < θ < 360° and
\displaystyle \sf{ { \sin }^{2} \theta = \frac{3}{4} }sin
2
θ=
4
3
EVALUATION
Here it is given that
\displaystyle \sf{ { \sin }^{2} \theta = \frac{3}{4} }sin
2
θ=
4
3
\displaystyle \sf{ \implies \: \sin \theta = \pm \: \frac{ \sqrt{3} }{2} }⟹sinθ=±
2
3
Case : 1
\displaystyle \sf{ \sin \theta = \: \frac{ \sqrt{3} }{2} }sinθ=
2
3
\displaystyle \sf{ \implies \: \sin \theta = \sin {60}^{ \circ} }⟹sinθ=sin60
∘
\displaystyle \sf{ \implies \: \theta = {60}^{ \circ} }⟹θ=60
∘
Case : 2
\displaystyle \sf{ \sin \theta = \: \frac{ \sqrt{3} }{2} }sinθ=
2
3
\displaystyle \sf{ \implies \: \sin \theta = \sin {60}^{ \circ} }⟹sinθ=sin60
∘
\displaystyle \sf{ \implies \: \sin \theta = \sin( {180}^{ \circ} - {60}^{ \circ}) }⟹sinθ=sin(180
∘
−60
∘
)
\displaystyle \sf{ \implies \: \sin \theta = \sin {120}^{ \circ} }⟹sinθ=sin120
∘
\displaystyle \sf{ \implies \: \theta = {120}^{ \circ} }⟹θ=120
∘
Case : 3
\displaystyle \sf{ \sin \theta = \: - \frac{ \sqrt{3} }{2} }sinθ=−
2
3
\displaystyle \sf{ \implies \: \sin \theta = - \sin {60}^{ \circ} }⟹sinθ=−sin60
∘
\displaystyle \sf{ \implies \: \sin \theta = \sin( {180}^{ \circ} + {60}^{ \circ}) }⟹sinθ=sin(180
∘
+60
∘
)
\displaystyle \sf{ \implies \: \sin \theta = \sin{240}^{ \circ} }⟹sinθ=sin240
∘
\displaystyle \sf{ \implies \: \theta = {240}^{ \circ} }⟹θ=240
∘
Case : 4
\displaystyle \sf{ \sin \theta = - \: \frac{ \sqrt{3} }{2} }sinθ=−
2
3
\displaystyle \sf{ \implies \: \sin \theta = - \sin {60}^{ \circ} }⟹sinθ=−sin60
∘
\displaystyle \sf{ \implies \: \sin \theta = \sin( {360}^{ \circ} - {60}^{ \circ}) }⟹sinθ=sin(360
∘
−60
∘
)
\displaystyle \sf{ \implies \: \sin \theta = \sin {300}^{ \circ} }⟹sinθ=sin300
∘
\displaystyle \sf{ \implies \: \theta = {300}^{ \circ} }⟹θ=300
∘
FINAL ANSWER
θ = 60° , 120° , 240° , 300°
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)
https://brainly.in/question/23306292
2. Find the value of cot (-3155°)