Physics, asked by saki6791, 7 months ago

let the period of revolution of a planet at a distance R from a star be T. Prove that if it was a diatance of 2R from the star, it's revolution will be √8T​

Answers

Answered by shadowsabers03
8

When a planet of mass m revolves along an orbit of radius R, it experiences centripetal force which is necessary provided by the force of gravitation.

\sf{\longrightarrow \dfrac{mv^2}{R}=\dfrac{GMm}{R^2}}

\sf{\longrightarrow v=\sqrt{\dfrac{GM}{R}}}

The time period of the planet is,

\sf{\longrightarrow T=\dfrac{2\pi R}{v}}

\sf{\longrightarrow T=\dfrac{2\pi R}{\sqrt{\dfrac{GM}{R}}}}

\sf{\longrightarrow T=2\pi R\sqrt{\dfrac{R}{GM}}}

\sf{\longrightarrow T=2\pi\sqrt{\dfrac{R^3}{GM}}}

Then we get,

\sf{\longrightarrow T\propto\sqrt{R^3}}

\sf{\longrightarrow T\propto R^\frac{3}{2}}

Therefore,

\sf{\longrightarrow \dfrac{T_2}{T_1}=\dfrac{(R_2)^\frac{3}{2}}{(R_1)^{\frac{3}{2}}}}

\sf{\longrightarrow T_2=T_1\times\dfrac{(R_2)^\frac{3}{2}}{(R_1)^{\frac{3}{2}}}}

Here,

  • \sf{R_1=R}
  • \sf{R_2=2R}
  • \sf{T_1=T}

Then,

\sf{\longrightarrow T_2=T\times\dfrac{(2R)^\frac{3}{2}}{R^{\frac{3}{2}}}}

\sf{\longrightarrow T_2=T\times\dfrac{2^\frac{3}{2}R^\frac{3}{2}}{R^{\frac{3}{2}}}}

\sf{\longrightarrow T_2=2^\frac{3}{2}\,T}

\sf{\longrightarrow\underline{\underline{T_2=\sqrt8\,T}}}

Hence the Proof!

Similar questions