Computer Science, asked by ViniJoshi6932, 10 months ago

Let the trace and determinant of a matrix A=[acbd] be 3 and 4 respectively. The eigenvalues of A are

Answers

Answered by ritheshjaston2002
7

Answer:

I think 12 is the answer for this

Answered by nayanpaul24
18

Answer: Eigen values are 3,1

Explanation:

The given matrix is A = \left[\begin{array}{ccc}a&b\\c&d\end{array}\right]

We know trace of a matrix is the sum of the principal diagonal element

The trace of A is given as 4  i.e.  a + d =4

The determinant of A is given as 3  i.e. ad - bc = 3

The following steps are used to find the eigen value

Step -1 : Multiply a 2 X 2 unit matrix to a scalar x

               \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]  x  = \left[\begin{array}{ccc}x&0\\0&x\end{array}\right]

Step - 2 : Subtract the above matrix from A

                \left[\begin{array}{ccc}a&b\\c&d\end{array}\right]  - \left[\begin{array}{ccc}x&0\\0&x\end{array}\right]  = \left[\begin{array}{ccc}a-x &b\\c&d - x\end{array}\right]

Step - 3: Find the determinant of the above matrix

              determinant of \left[\begin{array}{ccc}a-x &b\\c&d - x\end{array}\right] = (a - x)(d - x) - bc

                                                                  = ad - ax - dx + x^{2} - bc

                                                                  = (ad - bc) - x(a + d) + x^{2}

                 By substituting the given values the above equation will become

  3 - 4x + x^{2}

Step - 4: solve the values for x that satisfy 3 - 4x + x^{2}  = 0

After solving the above quadratic equation we get the values of x as 3 and 1 which is nothing but eigen values. (Answer)

Similar questions