let u = {1,2,3,4,5,6} ,a= {2,3} and b ={3,4,5} find a' , b' , a' intersection to b' , a union b and hence show that (a union b )'= a' union b'
Answers
Step-by-step explanation:
Given:-
U = {1,2,3,4,5,6} ,
A= {2,3} ,
and B={3,4,5} .
To find:-
Find the following:-
1)A'
2)B'
3) A' n B'
4) A' U B'
5) Show that (AUB)' = A' U B'
Solution:-
Given sets are :
U = {1,2,3,4,5,6} ,
A= {2,3} ,
and B={3,4,5} .
1) A' = U - A
=> {1,2,3,4,5,6} - {2,3}
=> { 1,4,5,6}
A' = {1,4,5,6}
2) B' = U - B
=> {1,2,3,4,5,6} - {3,4,5}
=> {1,2,6}
B' = {1,2,6}
3) A' n B':-
= { 1,4,5,6} n { 1,2,6}
= {1,6}
A' n B' = { 1,6 } -------(1)
4) A' U B':
={1,4,5,6} U { 1,6}
= { 1,4,5,6}
A' U B' = { 1,4,5,6}-----(2)
5)(AUB)' = A' U B':
AUB =
{ 2,3} U { 3,4,5}
= { 2,3,4,5}
LHS:-
(AUB)'
=>U - (AUB)
=> {1,2,3,4,5,6} - { 2,3,4,5}
=> {1,6}
(AUB)' = { 1,6}
LHS= {1,6}---------(3)
A' U B' = { 1,4,5,6}
RHS = {1,4,5,6} ----(4)
From (3)&(4)
(AUB)' ≠ A' U B'
But
From (1)&(3)
(AUB)' = A' n B'
Answer:-
1)A' = { 1,4,5,6}
2)B' = {1,2,6}
3) A' n B' = { 1,6 }
4) A' U B' = { 1,4,5,6}
5)(AUB)' = A' n B'