Physics, asked by iamravijdb, 11 months ago

let us assume that our galaxy consist of 2.5*10^11 stars each of one solar mass . how long will a star at a distance of 50000 light year from a the galactic center take to complete one revolution take at diameter of the milky way to be 10^5
light years

Answers

Answered by Anonymous
51

Explanation:

\Large{\red{\underline{\underline{\sf{\blue{Given:}}}}}}

\sf{Number\:of\:stars\:in\:our\:galaxy\:=\:2.5\times 10^{11}}

\sf{Mass\:of\:each\:star\:=\:1\:solar\,mass\:=\:2.5\times 10^{30}kg}

\sf Mass\:of\:our\:galaxy\:=\:2.5\times 10^{11}\times 2\times 10^{36}kg\:=\:5\times 10^{41}kg

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\Large{\red{\underline{\underline{\sf{\green{To\:Find:}}}}}}

\sf Time\:taken\:for\:a\:star\:to\:complete\:one\:revolution

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\Large{\red{\underline{\underline{\sf{\pink{Solution:}}}}}}

\sf Diameter\:of\:milky\:way\:=\:10^5ly

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad d\:=\:10^5\times 3\times 10^8{ms}^{-1}\times 1

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf The\:distance\:of\:the\:star\:=\:radius\:of\:it's\:orbit\:=\:5\times 10^4ly

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\textsf{therefore, the\:time\:period\:of\:the\:revolving\:is\:given\:by,}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad T^2\:=\: \dfrac{4\pi^2R_E^3}{GM_E}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad =\:\dfrac{4\pi^2}{GM_E}\times \dfrac{d^3}{8}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf T^2\:=\: \dfrac{\pi^2\times (3\times 10^{13})^3\times 365\times 24\times 60\times 60}{2\times 6.67\times 10^{-11}\times 5\times 10^{41}}yr^2

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf T^2\:=\: \dfrac{27\pi^2\times 10^{39}\times 365\times 24\times 3600}{6.67\times 10^{31}}yr^2

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf T^2\:=\:1.259\times 10^{17}yr^2

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\boxed{\large{\sf\orange{T\:=\:3.549\times 10^8yrs}}}

Answered by Anonymous
20

Answer:

\bullet \:  \sf \: Numbers  \: of  \: stars \:  in  \: our \:  galaxy \:  (N) = 2.5 \: \times  \:   {10}^{11}

 \bullet \:  \sf \: Mass  \: of \:  each \:  star \:  (m) = One  \: solar  \: mass \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:   \qquad \:  \:  \:  \:  \:  \:   \:  \:  = \sf \:  2  \: \times  \: 10^{30}

 \bullet \:  \sf \: Total \:  mass  \: of \:  the \:  stars \:  in  \: one \:  galaxy = N  \: \times  \: m

\\

: \implies \sf 2.5 \times  {10}^{11}  \times 2 \times  {10}^{30}

\\

: \implies\sf 5.0 \times  {10}^{41} \: kg

\bullet \:  \sf \: Radius \:  of \:  orbit  \: of \:   \: a \:  star \:  (r) = 50000  \: light  \: years

 \star \:  \sf \: But \:  1  \: light  \: year = 9.46  \times  {10}^{5}  \: m

Therefore,

\bigstar \:  \:  \sf   r = 50000 \times 9.46 \times  {10}^{15}  \: m \:  \:  \bigstar

\bigstar  \:  \sf \: Diameter  \: of \:  milky \:  way =  {10}^{5}  \: light \: years. \:  \bigstar

___________________.....

The centripetal force required for orbital motion is obtained from the gravitational force.

Therefore,

\dag \:  \underline{ \boxed {\boxed{\bf \: Centripetal  \: force = Gravitational  \: force} }}\:  \dag

So,

: \implies \sf  \dfrac{m {v}^{2}}{r}  =  \dfrac{GMm}{ {r}^{2} }

\\

:  \implies \sf v^{2}  =  \dfrac{GM}{r}

\\

: \implies \sf (r \omega)^{2}  =  \dfrac{GM}{r} \:  \:  \:  \:  \big \lgroup \bf \because \: v = r \omega \big \rgroup

\\

: \implies \sf  \omega^{2}  =  \dfrac{GM}{r^{3} }

\\

: \implies \sf \bigg \{\dfrac{2\pi}{T} \bigg \} = \dfrac{GM}{r^{3} } \:  \bigg \lgroup \bf {\because \:  \omega =  \dfrac{2\pi}{T}  } \bigg \rgroup

\\

: \implies \sf  T^2 = \dfrac{ 4\pi^{2} r^{3}}{GM}

\\

: \implies \sf T =  \sqrt{ \dfrac{4 \times (3.14)^{2} \:  \times  \: (5 \times 9.46 \times 10^{15}) ^{3}   }{6.67 \times 10^{ - 11}  \times 5 \times  {10}^{41} }}

\\

: \implies \sf T =  \sqrt{12527.5 \times  {10}^{28} }

\\

: \implies \sf  T = 111.93 \times  {10}^{14 } \:  s

\\

: \implies \sf  T =\dfrac{ 111.93 \times  {10}^{14 }}{365 \times 24 \times 3600} \: years

\\

: \implies \underline{  \boxed{\sf  T =3.55 \times  {10}^{8}  \: years}}

Similar questions