Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly.
Answers
Explanation:
Mass of our galaxy Milky Way, M = 2.5 × 1011 solar mass
Solar mass = Mass of Sun = 2.0 × 1036 kg
Mass of our galaxy, M = 2.5 × 1011 × 2 × 1036 = 5 × 1041 kg
Diameter of Milky Way, d = 105 ly
Radius of Milky Way, r = 5 × 104 ly
1 ly = 9.46 × 1015 m
∴r = 5 × 104 × 9.46 × 1015
= 4.73 ×1020 m
Since a star revolves around the galactic centre of the Milky Way, its time period is given by the relation:
T = ( 4π2r3 / GM)1/2
= [ (4 × 3.142 × 4.733 × 1060) / (6.67 × 10-11 × 5 × 1041) ]1/2
= (39.48 × 105.82 × 1030 / 33.35 )1/2
= 1.12 × 1016 s
1 year = 365 × 324 × 60 × 60 s
1s = 1 / (365 × 324 × 60 × 60) years
∴ 1.12 × 1016 s = 1.12 × 1016 / (365 × 24 × 60 × 60) = 3.55 × 108 years.
Given:
Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly.
Answer:
Let M be mass.
Let R be radius.
Let D be diameter.
Hence:
= M of Galaxyies = 2.5 × 1011
= M of sun = 2.0 × 1036 kg
= M's = 2.5 × 1011 × 2 × 1036 = 5 × 1041 kg
= D = 10 s ly
=R = 5 × 104 ly
=ly = 9.46 × 1015 m
=R = 5 × 104 × 9.46 × 1015
= 4.73 × 1020 m
-> T = [ 4π 2r³ ] / GM 1/2
Calculations
Refer the attachment.