Let us show that cosec square22 degree cot square 68 degree = sin square 22 degree + sin square 68 degree + cot square 68 degree
Answers
Answered by
9
Answer:
Sin^2 22+sin^2 68/cos^2 22+cos^2 68+sin^2 63+sin^2 27
sin^2 22+ cos^2 22/sin^2 68+cos^2 68+sin^2 63+sin^227
=1/1+1
=2
so in this question you have two know
sinA =cos (90-A)
cosA=sin (90-A)
sin^2 A+cos^2 A=1
Step-by-step explanation:
follow me
Answered by
8
Step-by-step explanation:
LHS= cosec²22°cot²68°
=sec²68°cot²68° [cosec²(90°-68°)=sec²68°]
= 1/cos²68°×cos²68°/sin²68°
= 1/sin²68°
= cosec²68°
RHS= sin²22°+sin²68°+cot²68°
= sin²22°+cos²22°+cot²68°
= 1+cot²22°
= cosec²68°
SO, RHS=LHS(PROVED)
Similar questions