Social Sciences, asked by Rajeshwari8025, 6 months ago

Let us show that, cosec²22° cot²68° = sin²22° + sin²68° + cot²68°
Please solve it
No spam​

Answers

Answered by misscutie94
45

Answer:

Solution :-

\mapsto L.H.S = cosec²22.cot²68

=> cosec²22°. cot²(90° - 22°)

=> cosec²22° . tan²22°

=> \dfrac{1}{sin^{²}22°} . \dfrac{sin^{²}22°}{cos^{²}22°}

=> \dfrac{1}{cos^{²}22°}

\implies sec²22°

Now,

\mapsto R.H.S = sin²22 °+sin²68° +cot²68°

=> sin²22 + sin²(90° - 22°)+cot²(90° - 22°)

=> sin²22°+cos²22°+tan²22°

=> 1+tan²22°

\implies sec²22°

\therefore L.H.S = R.H.S

\leadsto\large{\boxed{\underline{\underline{\bf{PROVED}}}}}


prince5132: Nice!
Answered by thapaavinitika6765
0

cosec²22° cot²68° = sin²22° + sin²68° + cot²68°

Please solve itcosec²22° cot²68° = sin²22° + sin²68° + cot²68°

Please solve it

Similar questions