Let \vec{a}=\hat{i}+2 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}
a
=
i
^
+2
j
^
+4
k
^
,
b
=
i
^
+λ
j
^
+4
k
^
and \vec{c}=2 \hat{i}+4 \hat{j}+\left(\lambda^{2}-1\right) \hat{k}
c
=2
i
^
+4
j
^
+(λ
2
−1)
k
^
be coplanar vectors \lambda \neq \pm 3 .λ≠±3. Then \vec{a} \cdot \vec{c}
a
⋅
c
is
Answers
Answered by
5
Step-by-step explanation:
We are given that vectors a,b and c are coplanar
Therefore,
But
Therefore, possible value of
Substitute the value then we get
#Learns more:
https://brainly.in/question/1648526
Similar questions