Math, asked by poojithasushrutha0, 1 year ago

Let \vec{a}=\hat{i}+2 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}
a
=
i
^
+2
j
^
​ +4
k
^
,
b
=
i
^

j
^
​ +4
k
^
and \vec{c}=2 \hat{i}+4 \hat{j}+\left(\lambda^{2}-1\right) \hat{k}
c
=2
i
^
+4
j
^
​ +(λ
2
−1)
k
^
be coplanar vectors \lambda \neq \pm 3 .λ≠±3. Then \vec{a} \cdot \vec{c}
a

c
is

Answers

Answered by lublana
5

a\cdot c=22

Step-by-step explanation:

\vec{a}=\hat{i}+2\hat{j}+4\hat{k}

\vec{b}=\hat{i}+\lambda\hat{j}+4\hat{k}

\vec{c}=2\hat{i}+4\hat{j}+(\lambda^2-1)\hat{k}

\lambda\neq \pm 3

We are given that vectors a,b and c are coplanar

Therefore,a.(b\times c)=0

a\cdot(b\times c)=\begin{vmatrix}1&2&4\\1&\lambda&4\\2&4&(\lambda^2-1)\end{vmatrix}

a\cdot(b\times c)=\lambda(\lambda^2-1)-16-2(\lambda^2-1-8)+4(4-2\lambda)

a\cdot(b\times c)=\lambda^3-\lambda-16-2\lambda^2+18+16-8\lambda

a\cdot(b\times c)=\lambda^3-2\lambda^2-9\lambda+18=0

\lambda^2(\lambda-2)-9(\lambda-2)=0

(\lambda-2)(\lambda^2-9)=0

(\lambda-2)(\lambda+3)(\lambda-3)=0

\lambda-2=0\implies \lambda=2

\lambda+3=0\implies \lambda=-3

\lambda-3=0\implies \lambda=3

But \lambda\neq \pm 3

Therefore, possible value of \lambda=2

Substitute the value then we get

\vec{c}=2\hat{i}+4\hat{j}+3\hat{k}

a\cdot c=(\hat{i}+2\hat{j}+4\hat{k})\cdot (2\hat{i}+4\hat{j}+3\hat{k})

a\cdot c=2+8+12=22

i\cdot j=j\cdot k=k\cdot i=0,i\cdot i=j\cdot j=k\cdot k=1

#Learns more:

https://brainly.in/question/1648526

Similar questions