Let x= 1+a+a^2+.......And y=1+b+b^2 prove that 1+ab+a^2b^2=xy/x+y-1
Answers
Answer:
proved
Step-by-step explanation:
Given Let x= 1+a+a^2+.......And y=1+b+b^2 prove that 1+ab+a^2b^2=xy/x+y-1
x=1+a+a2+a3+⋯
y=1+b+b2+b3+⋯
Letz=1+ab+a2b2+a3b3+⋯
∵a and b are proper fractions
∴a<1andb<1
x=1+a+a2+a3+⋯is the sum of an infinite geometric progression
with first term 1 and common ratioa<1
∴sum x=a1−r=11−a
y=1+b+b2+b3+⋯is the sum of an infinite geometric progression
with first term 1 and common ratiob<1
∴sum y=a1−r=11−b
z=1+ab+a2b2+a3b3+⋯is the sum of an infinite geometric progression
with first term 1 and common ratioab<1
∴sum z=a1−r=11−ab(1)
x=11−a⟹1x=1−a⟹1x−1=−a(2)
y=11−b⟹1y=1−b⟹1y−1=−b
⟹−1y+1=b(3)
by (2) x (3)
(1x−1)(−1y+1)=−ab
⟹(1−xx)(y−1y)=−ab
⟹((1−x)(y−1)xy)=−ab
⟹(y−1−xy+xxy)=−ab
⟹1+(y−1−xy+xxy)=1−ab
⟹(xy+y−1−xy+xxy)=1−ab
⟹(x+y−1xy)=1−ab
⟹xyx+y−1=11−ab=zby (1)
⟹1+ab+a2b2+a3b3+⋯=xyx+y−1