Math, asked by nishant8495, 1 year ago

Let x and y be real numbers satisfying 9x2 +16y2 = 1. Then (x+y) is maximum when

Answers

Answered by balakrishna40
0

9 {x}^{2}  + 16 {y}^{2}  = 1

 \frac{ {x}^{2} }{ \frac{1}{9} }  +  \frac{ {y}^{2} }{ \frac{1}{16} }  = 1

it is an ellipse with

a =  \frac{1}{3} \:  \:  and \:  \:  \: b =  \frac{1}{4}

let any point on it be

(a cos \alpha   \:  \:  \:  \:  \: bsin \alpha ) = ( \frac{1}{3} cos \alpha  \:  \:  \:  \:  \frac{1}{4} sin \alpha )

x =  \frac{1}{3} cos \alpha  \:  \:  \: and \:  \:  \: \:  \:  \:  \: y =  \frac{1}{4} sin \alpha

x + y =  \frac{cos \alpha }{3}  +  \frac{sin \alpha }{4}

max(x + y) =  \sqrt{ { \frac{1}{3} }^{2} +  { \frac{1}{4} }^{2}  }

 \sqrt{ \frac{1}{9}   +  \frac{1}{16} } =  \sqrt{ \frac{16 + 9}{144} }  =  \sqrt{ \frac{25}{144} }  =  \frac{5}{12}

Similar questions