Math, asked by riyajnisha, 1 year ago

let x' and y' be solution of the following equations
(2x)^ln2=(3y)^ln3
3^lnx=2^lny
then x' is ?

Answers

Answered by Anonymous
69
see attachment....hope it will help.
Attachments:
Answered by mindfulmaisel
15

Given:

2 \mathrm{x}^{\mathrm{ln} 2}=3 \mathrm{y}^{\mathrm{ln} 3}

To find:

x' =?

Answer:

2 \mathrm{x}^{\mathrm{ln} 2}=3 \mathrm{y}^{\mathrm{ln} 3}

Taking Log on both sides,

\ln (\mathrm{x}) \ln (3)=\ln (\mathrm{y}) \ln (2)

\ln (\mathrm{y})=\frac{\ln (\mathrm{x}) \ln (3)}{\ln (2)}

Now consider 2 x^{\ln 2}=3 y^{\ln 3},

\ln (2)(\ln (2)+\ln (\mathrm{x}))=\ln (3) \quad(\ln (3)+\ln (\mathrm{y}))

(\ln { ( } 2))^{ 2 }+\ln { ( } 2)\cdot \ln { ( } { x })=(\ln { ( } 3))^{ 2 }+\ln { ( } 3)\cdot \ln { ( } { y })

(\ln { ( } 2))^{ 2 }+\ln { ( } 2)\cdot \ln { ( } { x })=(\ln { ( } 3))^{ 2 }+\ln { ( } 3)\cdot \frac { \ln { ( } { x })\ln { ( } 3) }{ \ln { ( } 2) }

-\ln (2)=\ln (\mathrm{x})

x=\frac { 1 }{ 2 }

Therefore, x'=\frac { 1 }{ 2 } is the required answer.

Similar questions