Math, asked by saroyamansi90, 2 months ago

Let X be a random variable such that
P [X=-2) = P[X=-I]P[X =2] = P[X=1]
and P[x>0 ] = p [x< 0]= P[x=0] obtain the probability mass function of x​

Answers

Answered by priyarawat800
8

Answer:

We denote p_1=P(X=-3)=P(X=-2)=P(X=-1),p

1

=P(X=−3)=P(X=−2)=P(X=−1), p_2=P(X=1)=P(X=2)=P(X=3),p

2

=P(X=1)=P(X=2)=P(X=3), p_3=P(X=0)=3p_1=3p_2p

3

=P(X=0)=3p

1

=3p

2

. From the latter we find that p_1=p_2p

1

=p

2

. From Equality 3p_1+3p_2+p_3=6p_1+3p_1=13p

1

+3p

2

+p

3

=6p

1

+3p

1

=1 yields p_1=\frac19p

1

=

9

1

. Thus,

P(X=-3)=P(X=-2)=P(X=-1)=\frac19,P(X=−3)=P(X=−2)=P(X=−1)=

9

1

,

P(X=1)=P(X=2)=P(X=3)=\frac19,P(X=1)=P(X=2)=P(X=3)=

9

1

, p_3=\frac13p

3

=

3

1

The distribution function is then given by F_X(x)=P(X\leq x)=\sum_{i=-m}^xp_iF

X

(x)=P(X≤x)=∑

i=−m

x

p

i

. The function YY takes values 13, 6, 0, 4, 9, 18, 31. The probability mass function can be taken from the probabilities:

P(X=13)=P(X=6)=P(X=0)=\frac19,P(X=13)=P(X=6)=P(X=0)=

9

1

, P(X=4)=\frac13P(X=4)=

3

1

,

P(X=9)=P(X=18)=P(X=31)=\frac19.P(X=9)=P(X=18)=P(X=31)=

9

1

.

Similar questions