Math, asked by StrongGirl, 9 months ago

Let x dy/dx - y =x² (x cosx + sinx) is a differential equation. If f(π) = π then f" (π/2)+ f (π/2) =

Answers

Answered by pulakmath007
23

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \displaystyle \: x \frac{dy}{dx}  - y =  {x}^{2} (x \cos x +  \sin x)

 \implies \:  \displaystyle \: x {dy}  - y \: dx =  {x}^{2} (x \cos x +  \sin x)dx

 \implies \:  \displaystyle \:  \frac{ x {dy}  - y \: dx}{ {x}^{2}}  =   (x \cos x +  \sin x)dx

 \implies \:  \displaystyle \: d \bigg(  \frac{y}{x}  \bigg)=   (x \cos x +  \sin x)dx

On integration

 \implies \:  \displaystyle \:    \frac{y}{x}  =  \displaystyle \int\limits_{}^{}  (x \cos x +  \sin x) \, dx

 \implies \:  \displaystyle \:    \frac{y}{x}  =x \sin x  -    \int\limits_{}^{}   \sin x  \, dx  +  \int\limits_{}^{}   \sin x  \, dx  + c

 \implies \:  \displaystyle \:    \frac{y}{x}  =x \sin x    + c \:  \: ...(1)

Where C is a constant

Now

y = \pi \:  \: when \:  \: x = \pi \:  \: gives

 \displaystyle \:    \frac{\pi}{\pi}  =\pi \sin \pi    + c

 \therefore \: c = 1

From Equation (1)

 \:  \displaystyle \:    \frac{y}{x}  =x \sin x    + 1

 \implies \:  \displaystyle \:    {y}  = {x}^{2}  \sin x    + x \:  \:

Differentiating both sides with respect to x two times

\:  \displaystyle \:      \frac{dy}{dx}  = {x}^{2}  \cos x    + 2x \sin x + 1 \:  \:

\:  \displaystyle \:      \frac{ {d}^{2} y}{d {x}^{2} }  =  - {x}^{2}  \sin x   + 2xcosx  + 2x \cos x + 2sinx\:  \:

 \implies \: \:  \displaystyle \:      \frac{ {d}^{2} y}{d {x}^{2} }  =  - {x}^{2}  \sin x   + 4xcosx  + 2sinx\:  \:

for \:  \: x =  \frac{\pi}{2}

\:  \displaystyle \:      \frac{dy}{dx}  =\pi+ 1 \:  \:

And

\:  \displaystyle \:      \frac{ {d}^{2} y}{d {x}^{2} }  =  -  \frac{ {\pi}^{2} }{4}  + 2

\:  \displaystyle \:     y  =    \frac{ {\pi}^{2} }{4}  +  \frac{\pi}{2}

[

So the required value is

 = \:  \displaystyle \:    +  \frac{\pi}{2} + 2

Similar questions