Let x = sin 1° then 1 1 + cos 1° cos 20 cos 2° cos 30 1 + +. cos 30 COS 4°
Answers
Answered by
1
Step-by-step explanation:
1
+
cos1
∘
.cos2
∘
1
+
cos2
∘
.cos3
∘
1
+...+
cos44
∘
.cos45
∘
1
=
x
1
(
cos0
∘
.cos1
∘
sin(1
0
−0
0
)
+
cos1
∘
.cos2
∘
sin(2
0
−1
0
)
+
cos2
∘
.cos3
∘
sin(3
0
−2
0
)
+...+
cos44
∘
.cos45
∘
sin(45
0
−44
0
)
)
=
x
1
(
cos0
∘
.cos1
∘
sin1
0
cos0
0
−cos1
0
sin0
0
+
cos1
∘
.cos2
∘
(sin2
0
cos1
0
−cos2
0
sin1
0
+
cos2
∘
.cos3
∘
sin3
0
cos2
0
−cos3
0
sin2
0
++
cos44
∘
.cos45
∘
sin45
0
cos44
0
−cos45
0
sin44
0
)sin(A−B)=sinAcosB−sinBcosA
=
x
1
(tan1
0
−tan0
0
+tan2
0
−tan1
0
+
+tan45
0
−tan44
0
)=
x
1
(tan45
0
−tan0
0
)= 1/x
Similar questions
Science,
1 month ago
Biology,
2 months ago
Social Sciences,
2 months ago
Hindi,
10 months ago
Math,
10 months ago