Math, asked by Arceus02, 8 months ago

Let x, y be positive reals such that x + y = 2. Prove that :-

\sf{{x}^{3}{y}^{3}({x}^{3} + {y}^{3}) \leq 2}

Answers

Answered by shadowsabers03
13

By \sf{AM\geq GM} inequality, we have,

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{x^3+y^3+(x^3+y^3)}{3}}

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{2(x^3+y^3)}{3}\quad\quad\dots(1)}

Given that,

\sf{\longrightarrow x+y=2}

\sf{\longrightarrow y=2-x}

Let us define a real valued function \sf{f} such that,

\sf{\longrightarrow f(x)=x^3+(2-x)^3}

\sf{\longrightarrow f(x)=x^3+8-12x+6x^2-x^3}

\sf{\longrightarrow f(x)=2(3x^2-6x+4)}

Consider the quadratic equation \sf{3x^2-6x+4.}

Here the coefficient of \sf{x^2,\ 3>0.}

Taking the discriminant,

\sf{\longrightarrow D=(-6)^2-(4\times3\times4)}

\sf{\longrightarrow D=36-48}

\sf{\longrightarrow D=-12<0}

Now \sf{a>0} and \sf{D<0.} Thus \sf{3x^2-6x+4>0} and so will \sf{f(x)} be. So \sf{f(x)} should have a minimum.

To find minimum we've to equate derivative of \sf{f} wrt \sf{x} to zero, i.e.,

\sf{\longrightarrow f'(x)=0}

\sf{\longrightarrow 2(6x-6)=0}

\sf{\longrightarrow x=1}

So \sf{f(x)} is minimum at \sf{x=1.}

At \sf{x=1,}

\sf{\longrightarrow f(1)=1^3+(2-1)^3}

\sf{\longrightarrow f(1)=2}

Therefore,

\sf{\longrightarrow f(x)\geq2}

\sf{\longrightarrow x^3+(2-x)^3\geq2}

Since \sf{y=2-x,}

\sf{\longrightarrow x^3+y^3\geq2}

Thus (1) becomes,

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{2\times2}{3}}

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{4}{3}}

\sf{\longrightarrow x^3y^3(x^3+y^3)\leq\left(\dfrac{4}{3}\right)^3}

\sf{\longrightarrow x^3y^3(x^3+y^3)\leq\dfrac{64}{27}}

\sf{\longrightarrow x^3y^3(x^3+y^3)\leq2.37}

Or,

\sf{\longrightarrow\underline{\underline{x^3y^3(x^3+y^3)\leq2}}}

Hence Proved!

Answered by Anonymous
19

By \sf{AM\geq GM} inequality, we have,

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{x^3+y^3+(x^3+y^3)}{3}}

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{2(x^3+y^3)}{3}\quad\quad\dots(1)}

Given that,

\sf{\longrightarrow x+y=2}

\sf{\longrightarrow y=2-x}

Let us define a real valued function \sf{f} such that,

\sf{\longrightarrow f(x)=x^3+(2-x)^3}

\sf{\longrightarrow f(x)=x^3+8-12x+6x^2-x^3}

\sf{\longrightarrow f(x)=2(3x^2-6x+4)}

Consider the quadratic equation \sf{3x^2-6x+4.}

Here the coefficient of \sf{x^2,\ 3>0.}

Taking the discriminant,

\sf{\longrightarrow D=(-6)^2-(4\times3\times4)}

\sf{\longrightarrow D=36-48}

\sf{\longrightarrow D=-12<0}

Now \sf{a>0} and \sf{D<0.} Thus \sf{3x^2-6x+4>0} and so will \sf{f(x)} be. So \sf{f(x)} should have a minimum.

To find minimum we've to equate derivative of \sf{f} wrt \sf{x} to zero, i.e.,

\sf{\longrightarrow f'(x)=0}

\sf{\longrightarrow 2(6x-6)=0}

\sf{\longrightarrow x=1}

So \sf{f(x)} is minimum at \sf{x=1.}

At \sf{x=1,}

\sf{\longrightarrow f(1)=1^3+(2-1)^3}

\sf{\longrightarrow f(1)=2}

Therefore,

\sf{\longrightarrow f(x)\geq2}

\sf{\longrightarrow x^3+(2-x)^3\geq2}

Since \sf{y=2-x,}

\sf{\longrightarrow x^3+y^3\geq2}

Thus (1) becomes,

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{2\times2}{3}}

\longrightarrow\sqrt[\sf{3}]{\sf{x^3y^3(x^3+y^3)}}\leq\sf{\dfrac{4}{3}}

\sf{\longrightarrow x^3y^3(x^3+y^3)\leq\left(\dfrac{4}{3}\right)^3}

\sf{\longrightarrow x^3y^3(x^3+y^3)\leq\dfrac{64}{27}}

\sf{\longrightarrow x^3y^3(x^3+y^3)\leq2.37}

Or,

\sf{\longrightarrow\underline{\underline{x^3y^3(x^3+y^3)\leq2}}}

Hence Proved!

Ꭵ ᏂᎧᎮᏋ ᎥᏖᏕ ᏂᏋᏝᎮ ᎩᎧᏬ

Similar questions