Math, asked by wwwiraaditi, 6 months ago

Let X1, X2, X3, X4, X5 are positive numbers such that X1 + x2 + x3 + x4 + X5 = 15. If M is maximum value of (1 + x1)(2 + x2)(3 + x3)(4 + x4)(5
+ X5) then the value of log6 M is

Answers

Answered by Zulkiflitasneem
1

5464321 isanswer

Step-by-step explanation:

Answered by sarahssynergy
0

given sum of five positive numbers 15, answer the question based on this information

Explanation:

  1. given five positive numbers x_1, x_2,x_3,x_4\ and\ x_5 such that                               x_1+x_2+x_3+x_4+x_5=15   --(i)  
  2. substituting x_1->x_1+1,\ x_2->x_2+2,\ x_3->x_3+3,\ x_4->x_4+4,\ x_5->x_5+5  in (i) we get , (x_1+1)+(x_2+2)+(x_3+3)+(x_4+4)+(x_5+5)=30    ---(ii)        
  3. here using Arithmetic - Geometric Mean inequality that is for given positive numbers,  A.M\geq G.M we have,                                                            ->\frac{(x_1+1)+(x_2+2)+(x_3+3)+(x_4+4)+(x_5+5)}{5}\geq \sqrt[5]{(x_1+1)(x_2+2)(x_3+3)(x_4+4)(x_5+5)} \\->\sqrt[5]{(x_1+1)(x_2+2)(x_3+3)(x_4+4)(x_5+5)} \leq \frac{30}{5} \\->{(x_1+1)(x_2+2)(x_3+3)(x_4+4)(x_5+5)} \leq 6^{5}  
  4. given that maximum value of (x_1+1)(x_2+2)(x_3+3)(x_4+4)(x_5+5)} be denoted by M. hence we have,                                                                                      M=6^5\\\log_{6}M= \log_{6}6^5\\\log_{6}M=5   -----> ANSWER                                                                                                                
Similar questions