Math, asked by srijakondeti8, 6 months ago

Let (xo, yo be the solution of the following
equations
(2x)2 =(3)3
3km = 2 km
Then xo is​

Answers

Answered by MissSolitary
0

QUESTION :-

 \blue{ \sf Let  \: (x_0,y_0) \:  be  \: the  \: solution  \: of  \: the  \: following}

 \blue{ \sf equations :}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \blue{ \sf \: ( { {2x)}^{1n (2 )} } =  {(3y)}^{ln(3)} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \blue{ \sf {3}^{ln(x)}  =  {2}^{ln(y)} }

{ \blue{ \sf{Then  \: x_0  \: is:}}}

EXPLANATION :-

{ \longrightarrow{ \blue{ \sf{( {2x)}^{ln(2)}  = ( {3y)}^{ln(3)} }}}}

Take ln(log) on both sides,

{ \longrightarrow{ \sf{ \: ln( {2x)}^{ln(2)}  = ln( {3y)}^{ln(3)} }}}

According to the property of log, we can shift the value of power to its front.

{ \longrightarrow{ \sf{ \: (ln \: 2)(ln \: 2x) = (ln \: 3)(ln \: 3y)}}}

{ \longrightarrow{ \sf{ \: (ln \: 2) \: [ln \: 2 + ln \: x] = (ln \: 3) \: [ln \: 3 + ln \: y]}}}

Open the brackets, and multiply with ln2 and ln3.

{ \longrightarrow{ \sf{ \: ( {ln \: 2)}^{ 2} + (ln2)(lnx) =  ( {ln \: 3)}^{ 2} + (ln3)(lny) }}}

{ \longrightarrow{ \sf{ \: ( {ln \: 2)}^{2}  - ( {ln \: 3)}^{2}  = (ln3)(lny) - ( ln2)(lnx) \:  \:  \:  \:  \:  \:  \:  \:  \:   { \red{..(i)}}}}}

  • solve another equation

{ \longrightarrow{  \blue{\sf{ \:  {3}^{ln x}  =  {2}^{lny} }}}}

Take ln(log) on both sides,

{ \longrightarrow{ \sf{ \:ln( {3)}^{lnx}  = ln( {2)}^{lny}  }}}

{ \longrightarrow{ \sf{ \: (lnx)(ln3) = (lny)(ln2)}}}

we can see two unknown values here, but since we have to find the value of (x0), so we will take (lny) as subject to the equation,

{ \longrightarrow{ \sf{ \: (lny) =  \frac{(lnx)(ln3)}{(ln2)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \red{..(ii) }}}}} \\

On putting the value of eq.(ii) in eq.(i),

{ \longrightarrow{  \green{\sf{ \: ( {ln)}^{2} - ( {ln3)}^{2}   = (ln3){ \red{(lny)}} - (ln2)(lnx)}}}}

Put value of (lny) here,

{ \longrightarrow{  \green{\sf{ \:  {(ln)}^{2}  - ( {ln3)}^{2} = (ln3) \: { \red{{ \huge{(}}{ \frac{(lnx)(ln3)}{(ln2)}{ \huge{)}} }}} - (ln2)(lnx) }}}}\\

we can take (lnx) common on the right side,

{ \longrightarrow{  \green{\sf{ \:  {(ln)}^{2}  - ( {ln3)}^{2} = (ln3) \: { \red{{ \huge{(}}{ \frac{{ \blue{{ \underline{(lnx)}}}}(ln3)}{(ln2)}{ \huge{)}} }}} - (ln2){ \blue{ \underline{(lnx) }}}}}}} \\

{ \longrightarrow{  \green{\sf{ \: ( {ln)}^{2} - ( {ln3)}^{2}   = { \blue{(lnx)}} \: { \huge{(}}  \frac{ {(ln3)}^{2}  }{ln2}  - ln2{ \huge{)}} }}}} \\

{ \longrightarrow{  \green{\sf{ \: ( {ln)}^{2} - ( {ln3)}^{2}   = (lnx){ \huge{(}}  \frac{ {(ln3)}^{2}  -  {(ln2)}^{2} }{(ln2)} { \huge{)}}\: }}}} \\

{ \longrightarrow{  \green{\sf{ \: ( {ln)}^{2} - ( {ln3)}^{2}   = \frac{(lnx)}{(ln2)}{ \huge{(}}  { {(ln3)}^{2}  -  {(ln2)}^{2} } { \huge{)}}\: }}}} \\

{ \longrightarrow{  \green{\sf{ \: {\cancel{( {ln)}^{2} - ( {ln3)}^{2}}}   = \frac{(lnx)}{(ln2)}{ \huge{(}}  {{\cancel{ {(ln3)}^{2}  -  {(ln2)}^{2} }}} { \huge{)}}\: }}}} \\

{ \longrightarrow{  \green{\sf{ \: -1  = \frac{(lnx)}{(ln2)}\: }}}} \\

{ \longrightarrow{  \green{\sf{ \: -ln2 = lnx}}}} \\

We can shift the (- sign) to its power,

{ \longrightarrow{  \green{\sf{ \: ln{(2 )}^{-1}= lnx}}}} \\

Now, they have same base so equate the powers,

{ \longrightarrow{  \green{\sf{ \: {2}^{-1}= x}}}} \\

{ \longrightarrow{\purple{\sf{ \: x = \frac{1}{2}}}}}\\

Therefore,

  • x0 = 1/2 (ans)
Similar questions