Let y(x) be the solution of the initial value problemx^2y"+xy'+y=x and y(1)=y'(1)=1.then the value of y(e^90°)
Answers
Answer: The value of y(e^90°) is 2.90
Step-by-step explanation:
Step1: Finding homogeneous solution
x²y" + xy' + y = 0
Substitute
[m(m-1) + m + 1] = 0
[m(m-1) + m + 1] = 0
m² + 1 = 0
m = i , -i
= C.sin(lnx) + D.cos(lnx)
Step 2: Finding particular solution
x²y" + xy' + y = x
Substitute y = Ax+B
0 + Ax + Ax+B = x
2Ax + B = x
Therefore,
A = 0.5 , B = 0
= x/2
Step 3: Writing general solution
y = +
y = C.sin(lnx) + D.cos(lnx) + x/2
Step 4: Substituting initial values to find C and D
y(1) = 1
Therefore,
1 = 0 + D + 0.5
D = 0.5
y’(x) = C.(cos(lnx))/x - D.(sin(lnx))/x + 1/2
y’(1) = 1
Therefore,
1 = C + 0 + 0.5
C = 0.5
y = ( sin(lnx) + cos(lnx) + x ) / 2
At x = e^90° = e^(/2) = 4.81,
y(x) = ( sin(ln e90°) + cos(ln e90° ) +4.81 ) /2
y(x) = ( 1 + 0 + 4.81) /2
y(x) = 2.905
#SPJ3
Answer:
Step-by-step explanation:
step number 2
find particular solution.
step number 3
writing general solution.
step number 4
substituting initial values to find C and D
y(x)=2,905