Let Y= x³ (x²-3x+2)/ (x-4)³(x+5)(x-3)(x²+2x+2).
The complete set of value of x satisfying Y <0 belongs to the interval
(A) x € (-5, 0) (1, 2) (3, 4)
(C) x € (-1,0) U (1, 2) (4, 00)
(B) x € (-00, 0) (2, 3) (3, 4)
(D) x = [-1,0) [1, 2) U (3,00)
Answers
Answered by
0
Answer:
Given,
(x−5)
5
(2x−7)
6
x
2
(3x−4)
3
(x−2)
4
≤0
⇒
2x−7
3x−4
≤0 and x=0,2,
=7/2
⇒
3
4
≤x<5 and x=0,2,
=7/2
Hence, number of integral solution is {0,2,3,4}=4
And number of positive integral solution are 2,3,4
Thus the number of integral solutions are 3
Similar questions