Math, asked by Anonymous, 7 months ago

Let y = y(x) be the solution of differential equation, \sf x\dfrad{dy}{dx} + y = xlog_ex (x > 1). If \sf 2y(2) = log_e4 -1 . Then y(e) =
1) e²/4
2) e/4
3) -e/2
d) -e²/2​

Answers

Answered by BrainlyPopularman
74

GIVEN :

• Differential equation –

 \\ \implies \bf x\dfrac{dy}{dx} + y = xlog_ex  \\

• And –

 \\ \bf \implies 2y(2) = log_e(4) -1 \\

TO FIND :

• Value of y(e) = ?

SOLUTION :

 \\ \implies \bf x\dfrac{dy}{dx} + y = xlog_ex  \\

 \\ \implies \bf \dfrac{dy}{dx} + \dfrac{y}{x}= log_ex  \\

• It's a linear differential equation. Now let's compare with –

 \\ \implies \bf \dfrac{dy}{dx} +Py= Q  \\

• So –

 \\ \implies \bf P =  \dfrac{1}{x}  \:  \:  \: and \:  \:  \: Q = log_ex \\

• Now Let's find I.F.

 \\ \implies \bf I.F. = e^{\int P.dx}\\

 \\ \implies \bf I.F. = e^{\int  \frac{1}{x} .dx}\\

 \\ \implies \bf I.F. = e^{ log_{e}(x) }\\

 \\ \implies \large{ \boxed{\bf I.F. = x}}\\

SOLUTION OF DIFFERENTIAL EQUATION :

 \\ \large \implies{ \boxed{ \bf y(I.F.) =  \int(I.F.)Q.dx \: + c}}\\

 \\\implies \bf y(x) =  \int(x)log_ex.dx \: + c\\

• Using identity –

 \\ \large\implies{ \boxed{ \bf  \int(u.v).dx = u \int v.dx -  \int  \bigg(\dfrac{du}{dx}. \int v.dx  \bigg).dx}}\\

• So that —

 \\\implies \bf y(x) = log_ex\int x.dx \:   -  \int  \bigg(\dfrac{d(log_ex)}{dx}. \int x.dx  \bigg).dx + c\\

 \\\implies \bf y(x) =(log_ex) \dfrac{ {x}^{2} }{2} -  \int \dfrac{1}{x} .  \dfrac{ {x}^{2} }{2} .dx + c\\

 \\\implies \bf y(x) =(log_ex) \dfrac{ {x}^{2} }{2} -  \int  \dfrac{ {x}}{2} .dx + c\\

 \\\implies \large{ \boxed{ \bf y(x) =(log_ex) \dfrac{ {x}^{2} }{2} -  \dfrac{ {x}^{2} }{4} + c}}\\

• And –

 \\ \bf \implies 2y(2) = log_e(4) -1 \\

 \\ \bf \implies y(2) = \dfrac{log_e(4) -1}{2} \\

• Now put x = 2

 \\\implies \large \bf (2) \bigg(\dfrac{log_e(4) -1}{2}\bigg) =(log_e(2)) \dfrac{ {2}^{2} }{2} -  \dfrac{ {2}^{2} }{4} + c\\

 \\\implies \large \bf log_e(4) -1 =(log_e(2)) \dfrac{4}{2} -  \dfrac{4}{4} + c\\

 \\\implies \large \bf log_e(2^2) -1 =(log_e(2))2-1+ c\\

 \\\implies \large \bf 2log_e(2) -1 =2log_e(2)-1+ c\\

 \\\longrightarrow \large {\boxed { \bf c=0}}\\

• So that –

 \\\implies \large \bf y(x) =(log_ex) \dfrac{ {x}^{2} }{2} -  \dfrac{ {x}^{2} }{4} + 0\\

• Now put x = e

 \\\implies \large \bf y(e)=(log_e{e}) \dfrac{ {e}^{2} }{2} -  \dfrac{ {e}^{2} }{4} \\

 \\\implies \large \bf y(e)= \dfrac{ {e}^{2} }{2} -  \dfrac{ {e}^{2} }{4} \\

 \\\implies \large \bf y(e)=\dfrac{ {e}^{2} }{4} \\

 \\\implies \large {\boxed{\bf y=\dfrac{e}{4}}} \\

▪︎ Hence, Option (b) is correct.

Answered by rocky200216
64

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

✞︎ y = y(x) be the solution of the differential equation,

  •  \bf \blue {x\dfrac{dy}{dx} + y = xlog_ex} \\

  • \bf\gray{And \: 2y(2) = log_e4 - 1} \\

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The value of y(e) .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

Given that,

  •  \bf {x\dfrac{dy}{dx} + y = xlog_ex} \\

☞︎︎︎ Divide the above equation by x .

 \rm {\implies \dfrac{x\dfrac{dy}{dx}}{x} + \dfrac{y}{x} = \dfrac{xlog_ex}{x}} \\

 \rm {\implies \dfrac{dy}{dx} + \dfrac{1}{x}y = log_ex} \\

☞︎︎︎ We know that, the standard form of the Linear differential equation is

\huge\red\checkmark  \bf \orange {\dfrac{dx}{dy} + p(x) . y = q(x)} \\

Where,

  •  \bf \red {p(x)} =  \bold {\dfrac{1}{x}}

  •  \bf \red {q(x)} =  \bold {log_ex = lnx}

☞︎︎︎ Here Integrating factor (I.F) is,

 \purple \bigstar  \bf \red {I.F = e^{\int {p(x) . dx}}} \\

 \rm {\implies I.F = e^{\int \frac{1}{x} . dx}} \\

 \rm {\implies I.F = e^{ln x}} \\

 \bf {\implies I.F = x} \\

☞︎︎︎ After solving the above differential equation, we get

  •  \bf \pink {y . (I.F) = \int \Big({q(x) . (I.F)}\Big)  dx} \\

 \rm {\implies y . x = \int {\Big(lnx . (x)\Big)}  dx} \\

 \rm {\implies y . x = \int {\Big(x . lnx\Big)}  dx} \\

☞︎︎︎ Now using By parts method,

 \bf \green {\int {(u . v)} dx = u \int {v} dx - \displaystyle {\int \Big(\dfrac{du}{dx} . \int {v} . dx \Big)} dx} \\

 \rm {\implies xy = lnx \int {x} dx - \displaystyle {\int \Big(\dfrac{d(lnx)}{dx} . \int {x} . dx \Big)} dx} \\

 \rm {\implies xy = \dfrac{x^2}{2} lnx - \displaystyle \dfrac{1}{2} \int \Big({\dfrac{1}{x} . x^2 \Big)} dx} \\

 \rm {\implies xy = \dfrac{x^2}{2} lnx - \displaystyle \dfrac{1}{2} \int {x} . dx} \\

 \rm {\implies xy = \dfrac{x^2}{2} lnx - \displaystyle \dfrac{1}{2} . \dfrac{x^2}{2} + c} \\

 \bf {\implies xy = \dfrac{x^2}{2} lnx -  \dfrac{x^2}{4} + c} \\

__________________________

☯︎ According to the question,

 \red \bullet  \bf \gray {2y(2) = log_e4 - 1} \\

✯ If x = 2,  \rm {\implies y(2) = \dfrac{ln4 - 1}{2}} \\

 \rm {\implies 2 . \dfrac{ln4 - 1}{2} = \dfrac{2^2}{2} ln2 - \displaystyle \dfrac{2^2}{4} + c} \\

 \rm {\implies ln4 - 1 = 2 ln2 - 1 + c} \\

 \rm {\implies ln4 - 1 =  ln{(2^2)} - 1 + c} \\

 \rm {\implies \cancel{ln4 - 1} =  \cancel{ln4 - 1} + c} \\

 \bf \blue {\implies c = 0} \\

__________________________

☞︎︎︎ Putting the value of 'c = 0' in the above equation, we get

 \bf \gray {\implies xy = \dfrac{x^2}{2} lnx - \dfrac{x^2}{4} + 0} \\

 \rm {\implies xy = x \Big(\dfrac{x}{2} lnx - \dfrac{x}{4}\Big)} \\

 \rm {\implies y =  \Big(\dfrac{x}{2} lnx - \dfrac{x}{4}\Big)} \\

Now,

 \rm {\implies y(e) =  \Big(\dfrac{e}{2} lne - \dfrac{e}{4}\Big)} \\

  • ln(e) = 1

 \rm {\implies y(e) =  \Big(\dfrac{e}{2} - \dfrac{e}{4}\Big)} \\

 \rm {\implies y(e) =  \Big(\dfrac{2e - e}{4}\Big)} \\

 \bf \purple {\implies y(e) = \dfrac{e}{4}} \\

\huge\red\therefore (b) The value of y(e) is  \bf {\dfrac{e}{4}} .

Similar questions