Math, asked by lk98016hr, 1 year ago

Let Z=1/2(√3-i) then smallest positive integer `n' such that (z^95+i^67)^94=Z^n​

Attachments:

Answers

Answered by Anonymous
20

Answer:

above attachment will help you

#Follow me

Attachments:
Answered by ravilaccs
0

Answer:

n=10 is the required least positive integer.

Step-by-step explanation:

From the hypothesis, we have

$z=\frac{\sqrt{3}}{2}-\frac{i}{2}=i\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)=i \omega$$

where $\omega=-\frac{1}{2}-\frac{\mathrm{i} \sqrt{3}}{2}$, which is a cube root of unity.

Now, $z^{95}=(i \omega)^{95}=-i \omega^{2}$

and $i^{67}=i^{3}=-i$

Therefore, $z^{95}+i^{67}=-i\left(1+\omega^{2}\right)=(-i)(-\omega)=i \omega$

$$\Rightarrow\left(\mathrm{z}^{95}+\mathrm{i}^{67}\right)^{94}=(\mathrm{i} \omega)^{94}=\mathrm{i}^{2} \omega=-\omega$$

Now, $-\omega=z^{n}=(i \omega)^{n}$

$$\begin{aligned}&\Rightarrow \mathrm{i}^{\mathrm{n}} \cdot \mathrm{w}^{\mathrm{n}-1}=-1 \\&\Rightarrow \mathrm{n}=2,6,10,14, \ldots \ldots\end{aligned}$$

and $n-1=3,6,9, \ldots \ldots$

Hence,n=10 is the required least positive integer.

Similar questions