Math, asked by lambasheetal, 6 months ago

Let z be a complex number then the area bounded by the curve |z-5i|^(2)+|z-12|^(2)=169 in square units is​

Answers

Answered by pulakmath007
8

SOLUTION

GIVEN

Let z be a complex number and the equation of the curve is

 \sf{ { |z - 5i| }^{2}  +  { |z - 12| }^{2} = 169 }

TO DETERMINE

The area bounded by the curve

EVALUATION

Here the given equation of the curve is

 \sf{ { |z - 5i| }^{2}  +  { |z - 12| }^{2} = 169 }

Let z = x + iy

Then above curve can be rewritten as below

 \sf{ { |(x + iy) - 5i| }^{2}  +  { |(x + iy) - 12| }^{2} = 169 }

 \sf{  \implies \: { |x + i(y - 5)| }^{2}  +  { |(x - 12) + iy| }^{2} = 169 }

 \sf{ \implies \:  { \bigg( \sqrt{ {x}^{2} +  {(y - 5)}^{2}  }  \bigg)}^{2} + { \bigg( \sqrt{ {(x - 12)}^{2} +  {y}^{2}  }  \bigg)}^{2}  = 169 }

 \sf{ \implies \:  {  {x}^{2} +  {(y - 5)}^{2}   } + {(x - 12)}^{2} +  {y}^{2}  = 169 }

 \sf{ \implies \:   {x}^{2} +  {y }^{2}  - 10y + 25+ {x}^{2} - 24x + 144 +  {y}^{2}  = 169 }

 \sf{ \implies \: 2  {x}^{2} +2  {y }^{2}   - 24x- 10y = 0 }

 \sf{ \implies \:  {x}^{2} + {y }^{2}   - 12x- 5y = 0 }

 \displaystyle \sf{ \implies \:  {x}^{2} - 2.x.6 +  {(6)}^{2}  + {y }^{2}  - 2.y. \frac{5}{2}  +  { \bigg(  \frac{5}{2} \bigg)}^{2}  =  {6}^{2}  +{ \bigg(  \frac{5}{2} \bigg)}^{2}   }

 \displaystyle \sf{ \implies \:  {(x - 6)}^{2} +  { \bigg( y -  \frac{5}{2} \bigg)}^{2}  =  36  +  \frac{25}{4}   }

 \displaystyle \sf{ \implies \:  {(x - 6)}^{2} +  { \bigg( y -  \frac{5}{2} \bigg)}^{2}  =    \frac{169}{4}   }

 \displaystyle \sf{ \implies \:  {(x - 6)}^{2} +  { \bigg( y -  \frac{5}{2} \bigg)}^{2}  =   { \bigg( \frac{13}{2} \bigg)}^{2} }

The above equation represents a circle with origin

 \displaystyle \sf{ at \:   \bigg(6, \frac{5}{2} \bigg)  \:  \: and \:  \: radius \:  =  \frac{13}{2}  \:  \: unit}

Hence area of the curve

= Area of the circle

 \displaystyle \sf{ = \pi \:  \times  { \bigg(  \frac{13}{2} \bigg)}^{2}  \:  \: sq \: unit}

 \displaystyle \sf{ = \frac{169\pi}{4}   \:  \: sq \: unit}

 \displaystyle \sf{ =42.25\pi  \:  \: sq \: unit}

 \displaystyle \sf{ = 132.79 \:  \: sq \: unit}

━━━━━━━━━━━━━━━━

Additional Information :

Complex Number

A complex number z = a + ib is defined as an ordered pair of Real numbers ( a, b) that satisfies the following conditions :

(i) Condition for equality :

(a, b) = (c, d) if and only if a = c, b = d

(ii) Definition of addition :

(a, b) + (c, d) = (a+c, b+ d)

(iii) Definition of multiplication :

(a, b). (c, d) = (ac-bd , ad+bc )

Of the ordered pair (a, b) the first component a is called Real part of z and the second component b is called Imaginary part of z

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 4x + (3x – y)i = 3 – 6i , then values of x and y.

(a)x=3/4, y=33/4, (b) x=33/4, y=3/4 (c) x=-33/4, y=3

https://brainly.in/question/29610963

2. (1-w+w2)(1-w2+w4)(1-w4+w2)...to 2n factors

https://brainly.in/question/22457549

Attachments:
Similar questions