Math, asked by Anonymous, 1 year ago

Let z be non-real complex number lying on the circle I z I = 1 . Then show that

\displaystyle{z=\dfrac{1+i\tan\left(\dfrac{arg \ z}{2}\right)}{1-i\tan\left(\dfrac{arg \ z}{2}\right)} }

Answers

Answered by Anonymous
12

Given:

z be non-real complex number lying on the circle | z | = 1.

To Prove:

\large\blue{z =  \frac{1 + i \tan( \frac{arg \: z}{2} ) }{1 - i  \tan( \frac{arg \: z}{2} ) } }

Proof :

Let,

\huge{z = r \:  {e}^{i \alpha} }

Where,

r = |z| and,

α = arg(z)

But, |z| = 1

=> r = 1

Therefore, we get,

 \huge{=  >  z =  {e}^{i \alpha }}

According yo Euler's Formula,

we get,

{ =  > z =  \cos( \alpha )  + i \sin( \alpha ) }

Now,

\huge{z =  {e}^{i \alpha }   =  \frac{ {e}^{i \alpha } }{ {e}^{ - i \alpha } }}

So, from Euler's formula,

we get,

\huge{ =  > z =  \frac{ \cos \frac{ \alpha }{2}  + i  \sin( \frac{ \alpha }{2} )   }{ \cos \frac{ \alpha }{2}  - i \sin \frac{ \alpha }{2}  } }

Multiplying Numerator and Denominator by (cos α/2 )

we get,

 {=  > z =  \frac{1 + i \tan \frac{ \alpha }{2}  }{1 - i \tan \frac{ \alpha }{2}  }}  \\  \\  =  > \red{z =  \frac{1 + i \tan( \frac{arg \: z}{2} ) }{1 - i \tan( \frac{arg \: z}{2} ) }}

Hence, Proved

Similar questions