Let Z be the set of all integers and A = {(a, b) : a² + 3b² = 28, a, b ∈ Z}
B = {(a, b) : a > b, a, b ∈ Z}. Then, the number of elements in
A ⋂ B, is
(a) 2 (b) 4 (c) 6 (d) 5
Answers
Answer:
let Z be the set of all integers and a!= {(a, b) :a² + 3b² = 28, a, b € Z}
answer 6
Answer :
Given -
- A = {(a, b) : a² + 3b² = 28, a, b ∈ Z}
- B = {(a, b) : a > b, a, b ∈ Z}
To Find -
- A ⋂ B
Solution -
Equation : a² + 3b² = 28.
Putting the values in the given equation to find the values of a and b.
Substituting b = 3,
a² + 3(3)² = 28
a² + 3×9 = 28
a² = 28 - 27
a = ±1
Substituting b = 2,
a² + 3(2)² = 28
a² + 3×4 = 28
a² + 12 = 28
a² = 28 - 12
a = ±4
Substituting b,
a² + 3(1)² = 28
a² + 3×1 = 28
a² + 3 = 28
a² = 28 - 3
a = ±5
Similarly, we can find other such values.
At last :
A = {(1,3), (1,-3), (-1,-3), (5,1), (-1,3), (-5,1), (5,-1), (-5,-1), (-4,-2), (4,-2), (-4,2), (4,2)}
Now,
B = {(a, b) : a > b, a, b ∈ Z}.
So,
B = {(1,-3), (-1,-3), (5,1), (5,-1), (4,-2), (4,2)}.
Hence,
A ⋂ B = {(1,-3), (-1,-3), (5,1), (5,-1), (4,-2), (4,2)}.
Hence, number of elements is 6.
So, (c) 6.