Let z=x+iy x y in R-{0} and i=sqrt(-1) then (z+bar(z))^(2019)+(z-bar(z))^(2020)+(zbar(z))^(2020) is a.
Answers
Answered by
3
Answer:
Here ans is 4
Step-by-step explanation:
Let z=x+iy.
Given, z
2
+
z
=0
or, x
2
−y
2
+2ixy+x−iy=0
or, (x
2
−y
2
+x)+i(2xy−y)=0
Comparing the real and imaginary part we get,
x
2
−y
2
+x=0.......(1) and 2xy−y=0.....(2).
From (2) we get, 2xy−y=0
or, y(2x−1)=0
or, y=0 and x=
2
1
.
When y=0 then from (1) we get, x
2
−x=0 or, x=0,−1.
Again x=
2
1
then from (1) we get, y
2
=
4
1
+
2
1
=
4
3
or, y=±
2
3
.
So the solutions, in the form (x,y) are (0,0),(−1,0),(±
2
3
,
2
1
).
So we have 4 solutions.
Similar questions