Math, asked by riyaukewith, 1 month ago

let Z1 and z2 be two complex numbers then proof that |z1z2| = |Z1| |z2|​

Answers

Answered by senboni123456
2

Step-by-step explanation:

Let  \tt\pink{{z}_{1}={x}_{1}+i{y}_{1}\:\:\:\&\:\:\:{z}_{2}={x}_{2}+i{y}_{2} }

So,

 \mathrm{   z_{1}z_{2} =(x_{1} +  i \: y_{1} )( x_{2} +  i \: y_{2} ) }

 \mathrm{   \implies z_{1}z_{2} =( x_{1} x_{2}  + i x_{1} y_{2} + ix_{2} y_{1} +  {i}^{2} y_{1} y_{2}) }

 \mathrm{   \implies z_{1}z_{2} = \{x_{1} x_{2}  + i (x_{1} y_{2} + x_{2} y_{1}  )-  y_{1} y_{2}  \} }

 \mathrm{   \implies z_{1}z_{2} = (x_{1} x_{2} -  y_{1} y_{2})+ i (x_{1} y_{2} + x_{2} y_{1}  )  }

Now,

 \mathrm{    |  z_{1}z_{2} | = \sqrt{ (x_{1} x_{2} -  y_{1} y_{2})^{2} +  (x_{1} y_{2} + x_{2} y_{1}  ) ^{2}  } }

 \mathrm{  \implies   |  z_{1}z_{2} | = \sqrt{ x_{1}^{2}  x_{2} ^{2}   +   y_{1}^{2}  y_{2}^{2} - 2  x_{1} x_{2}y_{1} y_{2} +  x_{1}^{2}  y_{2}^{2}  + x_{2} ^{2}  y_{1}^{2} +  2  x_{1} x_{2}y_{1} y_{2} } }

 \mathrm{  \implies   |  z_{1}z_{2} | = \sqrt{ x_{1}^{2}  x_{2} ^{2}   +   y_{1}^{2}  y_{2}^{2} +  x_{1}^{2}  y_{2}^{2}  + x_{2} ^{2}  y_{1}^{2}} }

 \mathrm{  \implies   |  z_{1}z_{2} | = \sqrt{ x_{1}^{2}  x_{2} ^{2}    +  x_{1}^{2}  y_{2}^{2} + y_{1}^{2}  y_{2}^{2} + x_{2} ^{2}  y_{1}^{2}} }

 \mathrm{  \implies   |  z_{1}z_{2} | = \sqrt{ x_{1}^{2} ( x_{2} ^{2}    +   y_{2}^{2}) + y_{1}^{2} ( y_{2}^{2} + x_{2} ^{2} )} }

 \mathrm{  \implies   |  z_{1}z_{2} | = \sqrt{ (x_{1}^{2} +  y_{1}^{2})( x_{2} ^{2}    +   y_{2}^{2}) } }

 \mathrm{  \implies   |  z_{1}z_{2} | = \sqrt{ (x_{1}^{2} +  y_{1}^{2})}. \sqrt{( x_{2} ^{2}    +   y_{2}^{2}) } }

 \red{ \mathsf{  \implies   |  z_{1}z_{2} | =  | z_{1} |.| z_{2} | } }

Similar questions