Math, asked by drrpkakati7408, 12 days ago

Let z1,z2,and z3 be complex numbers such that |z1|=|z2|=|z3|=r>0 and z1+z2+z3≠0 . Prove that |z1z2+z2z3+z3z1÷z1+z2+z3| = r

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=r>0\,\,\,\,\,and}\\\tt{z_{1}+z_{2}+z_{3}\ne0}

\bf{Let\,\,z_{1}=r\,e^{i\theta_{1}},\,\,z_{2}=r\,e^{i\theta_{2}},\,\,z_{3}=r\,e^{i\theta_{3}}}

Now,

\sf{\left|\dfrac{z_{1}z_{2}+z_{2}z_{3}+z_{3}z_{1}}{z_{1}+z_{2}+z_{3}}\right|}

\sf{=\left|\dfrac{r\,e^{i\theta_{1}}\cdot\,r\,e^{i\theta_{2}}+r\,e^{i\theta_{2}}\cdot\,r\,e^{i\theta_{3}}+r\,e^{i\theta_{3}}\cdot\,r\,e^{i\theta_{1}}}{r\,e^{i\theta_{1}}+r\,e^{i\theta_{2}}+r\,e^{i\theta_{3}}\right|}

\sf{=\left|\dfrac{r^2\cdot\,e^{i\theta_{1}}\cdot\,e^{i\theta_{2}}+r^2\cdot\,e^{i\theta_{2}}\cdot\,e^{i\theta_{3}}+r^2\cdot\,e^{i\theta_{3}}\cdot\,e^{i\theta_{1}}}{r\left(e^{i\theta_{1}}+e^{i\theta_{2}}+e^{i\theta_{3}\right)}\right|}

\star\bf{\,We\,\,know,\,\,for\,\,any\,\,complex\,\,number\,\,z,\,\,|z|^2=z\cdot\,\bar{z}}

\mapsto\bf{\,\,Since\,\,|z_{1}|=|z_{2}|=|z_{3}|=r}\\\\\mapsto\bf{\,\,r^2=z_{1}\cdot\bar{z}_{1},\,\,r^2=z_{2}\cdot\bar{z}_{2},\,\,r^2=z_{3}\cdot\bar{z}_{3}}

So,

Similar questions