Math, asked by konagallathrilok27, 9 months ago

LEVEL - 11
In a quadrilateral ABCD, COSA.cosB + sin sinD =
a) cosC cosD + sinA sinB
b) cosC cosD - sinA sinB
c) sinC sinD - COSA cosB
d) sinA + sinB + sinC + sind​

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\textsf{ABCD is a quadrilateral}

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{cosA\;cosB+sinC\;sinD}

\underline{\textsf{Solution:}}

\textsf{Since ABCD is a quadrilatel, we have}

\mathsf{A+B+C+D=360^{\circ}}

\mathsf{Consider,}

\mathsf{cosA\;cosB+sinC\;sinD}

\textsf{Using the identity}

\boxed{\mathsf{cos(A+B)=cosA\,cosB-sinA\,sinB}}

\mathsf{=cos(A+B)+sinA\,sinB+cosC\,cosD-cos(C+D)}

\mathsf{=cos(A+B)-cos(C+D)+sinA\,sinB+cosC\,cosD}

\mathsf{=cos(360^{\circ}-(C+D))-cos(C+D)+sinA\,sinB+cosC\,cosD}

\mathsf{=cos(C+D)-cos(C+D)+sinA\,sinB+cosC\,cosD}

\mathsf{=sinA\,sinB+cosC\,cosD}

\implies\boxed{\mathsf{cosA\;cosB+sinC\;sinD=sinA\,sinB+cosC\,cosD}}

\underline{\textsf{Answer:}}

\textsf{Option (a) is correct}

Similar questions