lf A, B and C are the interior angles of a triangle ABC, show that:
1-) cos A + B/2 = sin C/2
2-) tan C + A/2 = cot B/2
Answers
Answered by
3
Step-by-step explanation:
answer 1)
cos ( a+b/2) = sin (c/2).
LHS :
cos ( 180- c/2). ........
( by angle sum property of triangle a+b+c =180....so from here we get a+b = 180-c)
cos ( 180/2 - c/2)
cos ( 90 -c/2).
then finally we get,
sin ( c/2).
( because cos ( 90- theta ) = sin theta )..
answer 2).
in the same way by angle sum property .
a+b+c =180.
c+a =180-b.
LHS:
tan (c+a/2) = cot ( b/2).
tan ( 180-b/2).
tan (180/2 -b/2).
tan ( 90 -b/2).
hence. cot(b/2).
because , tan ( 90-theta )= cot theta...
HOPE THIS WILL HELP U......Just remember the complementory identities
Similar questions