Math, asked by StrongGirl, 7 months ago

lf a,B are roots of x² - x + 2∧, =0 and a. ∦ are roots of 3x² — 10x + 27 ∧ = 0 then value of β∧/∧ :

Attachments:

Answers

Answered by Mounikamaddula
7

Answer:

Answer:

 \frac{ \beta  \gamma }{λ}  = 18

Given:

It is given that,

 \alpha , \beta are the roots of the equation,

 {x}^{2}  - x + 2λ = 0

And,

 \alpha  ,\gamma are the roots of the equation,

3 {x}^{2}  - 10x + 27λ = 0

From the first equation,

Sum   of   the   roots,\alpha  +  \beta  = 1

Product   of   the   roots, \alpha  \beta  = 2λ

Again from the equation 2.

sum   of   the   roots  , \alpha  +  \gamma  = 10/3

product \:  of \:  the  \: roots  \:  \alpha  \gamma  = 9λ

So,

 \frac{ \beta }{ \gamma }  =  \frac{2}{9}

 \beta  =  \frac{2 \gamma }{9}

And also,

 \beta  -  \gamma  = 1 -  \frac{10}{3}

 \beta  -  \gamma  =   \frac{ - 7}{3}

Put the  \beta value in the above equation,

 \frac{2 \gamma }{9}  -  \gamma  =  \frac{ - 7}{3}

 \frac{2 \gamma  - 9 \gamma }{3}  =  - 7

 - 7 \gamma  =  - 21

 \gamma  = 3

So,

 \beta  =  \frac{2 \gamma }{9}

 \beta  =  \frac{6}{9}

 \beta  =  \frac{2}{3}

substitute  \beta value in the given equation,

 \alpha  +  \beta  = 1

 \alpha  +  \frac{2}{3}  = 1

 \alpha  = 1 -  \frac{2}{3}

 \alpha  =  \frac{1}{3}

Now,

 \alpha  \beta  = 2λ

 \frac{1}{3}  \times  \frac{2}{3}  = 2λ

9λ = 1

 λ =  \frac{1}{9}

So,

The value of

 \alpha  =  \frac{1}{3} </strong><strong>,</strong><strong> \beta  =  \frac{2}{3}

 \gamma  = 3</strong><strong>,</strong><strong>λ</strong><strong> =  \frac{1}{9}

In the question:

 \frac{ \beta  \gamma }{λ}  =  \frac{2}{ \frac{1}{9} }

 \frac{ \beta  \gamma }{λ}  = 18

So, The answer is 18.....


MisterIncredible: Fantastic
Answered by BrainlyTornado
6

QUESTION:

lf α, β are roots of x² - x + 2λ = 0 and α, γ are roots of 3x² - 10x + 27λ = 0 then value of βγ / λ is.

ANSWER:

  • The value of βγ / λ = 18.

GIVEN:

  • α, β are roots of x² - x + 2λ = 0

  • α, γ are roots of 3x² - 10x + 27λ = 0

TO FIND:

  • The value of βγ / λ.

EXPLANATION:

α, β are roots of x² - x + 2λ = 0.

\boxed{ \boldsymbol{ \large{ \gray{\alpha + \beta = -\dfrac{b}{a}}}}}

b = - 1

a = 1

 \sf \alpha + \beta = -\dfrac{ - 1}{1}

 \sf \alpha + \beta = 1

\boxed{ \boldsymbol{ \large{ \gray{\alpha \ \beta = \dfrac{c}{a}}}}}

c = 2 λ

a = 1

 \sf \alpha \  \beta  =  \dfrac{2 \ \lambda}{1}

 \sf  \lambda =  \dfrac{ \alpha \  \beta}{2}

α, γ are roots of 3x² - 10x + 27λ = 0

\boxed{ \boldsymbol{ \large{ \gray{\alpha + \gamma = -\dfrac{b}{a}}}}}

b = - 10

a = 3

 \sf\alpha + \gamma = -\dfrac{ - 10}{3}

 \sf\alpha + \gamma = \dfrac{  10}{3}

\boxed{ \boldsymbol{ \large{ \gray{\alpha \ \gamma = \dfrac{c}{a}}}}}

c = 27 λ

a = 3

\sf\alpha \ \gamma = \dfrac{27 \ \lambda}{3}

\sf\alpha \ \gamma = 9  \ \lambda

\sf\lambda =   \dfrac{\alpha \ \gamma}{9}

Equate both the values of λ.

 \sf  \dfrac{\alpha  \ \gamma}{9}  =  \dfrac{ \alpha  \ \beta}{2}

 \sf  \dfrac{\gamma}{9}  =  \dfrac{\beta}{2}

 \sf  \beta = \dfrac{2}{9} \ \gamma

 \sf We \ know \ that \ \alpha + \beta = 1

 \sf \alpha + \dfrac{2}{9} \ \gamma = 1

 \sf  \dfrac{9 \ \alpha  + 2 \ \gamma}{9}  = 1

 \sf  9 \ \alpha  + 2 \ \gamma = 9

 \sf We \ know \ that \ \alpha + \gamma = \dfrac{  10}{3}

 \sf  \alpha   = \dfrac{  10}{3} - \gamma

 \sf  \alpha   = \dfrac{  10 - 3 \ \gamma}{3}

 \sf  9  \left(\dfrac{  10 - 3 \ \gamma}{3} \right)   + 2 \ \gamma = 9

 \sf  3( 10 - 3 \ \gamma)   + 2 \ \gamma = 9

 \sf  30 - 9 \ \gamma  + 2 \ \gamma = 9

 \sf - 7 \ \gamma =  - 21

 \sf  \gamma = 3

 \sf  We\ know \ that\ \alpha   = \dfrac{  10}{3} - \gamma

 \sf \alpha   = \dfrac{  10}{3} -3

 \sf \alpha   = \dfrac{  10 - 9}{3}

 \sf \alpha   = \dfrac{1}{3}

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = \dfrac{ \beta \  \gamma}{ \dfrac{ \alpha \  \beta}{2} }

\sf As\ we \ know\ that\  \lambda =  \dfrac{ \alpha \  \beta}{2}

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = \dfrac{2 \ \beta \  \gamma}{ \alpha \  \beta}

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = \dfrac{2 \  \gamma}{ \alpha }

Substitute α = 1/3 and γ = 3

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = \dfrac{2(3)}{  \dfrac{1}{3}  }

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = 2(3) \times 3

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = 6 \times 3

  \sf \dfrac{ \beta \  \gamma}{ \lambda}  = 18

HENCE THE VALUE OF βγ / λ = 18.


BloomingBud: wonderful answer !
MisterIncredible: Awesome
Similar questions