Math, asked by FarmanAli1, 1 year ago

lf a2-6a-1=0 find a2+1/a2

Answers

Answered by Agastya0606
3

Given: The expression a^2 - 6a - 1 = 0

To find: The value of a^2 + 1/a^2

Solution:

  • Now we have given the expression as:

                 a^2 - 6a - 1 = 0

  • We can write it as:

                 a^2 - 1 = 6a .................(i)

  • Now we have: a^2 + 1/a^2
  • We can write it as:

                 ( a - 1/a )^2 + 2

                 (a^2 - 1 / a)^2 + 2

  • Putting (i) in above, we get:

                 (6a/a)^2 + 2

                 36 + 2

                 38

Answer:

             So the value of the given expression is 38.

Answered by ashishks1912
7

GIVEN :

The equation is a^2-6a-1=0

TO FIND :

The value of the expression a^2+\frac{1}{a^2}

SOLUTION :

Given equation is a^2-6a-1=0

Now to find the value of the given expression as below :

Solving a^2-6a-1=0

Dividing the above equation by 'a' on both the sides we get,

\frac{a^2-6a-1}{a}=\frac{0}{a}

\frac{a^2}{a}-\frac{6a}{a}-\frac{1}{a}=0

a-6-\frac{1}{a}=0

a-\frac{1}{a}=6

Squaring on both sides

(a-\frac{1}{a})^2=6^2

By using the Algebraic identity :

(a-b)^2=a^2-2ab+b^2

Here a=a and b=\frac{1}{a} and substituting the values in the above formula  we get,

a^2-2(a)(\frac{1}{a})+(\frac{1}{a})^2=36

a^2-2+\frac{1}{a^2}=36

a^2+\frac{1}{a^2}=36+2

a^2+\frac{1}{a^2}=38

∴ the value of a^2+\frac{1}{a^2} is 38.

Similar questions