lf alpha and Beta are the roots of the equation alpha COS 2 theta + beta Sin2theta=b, then prove that tan alpha+tan beta=2b/a+c
Answers
Answered by
0
Step-by-step explanation:
ANSWER
Given,
acos2θ+bsin2θ=c
⇒ a(1+tan2θ1−tan2θ)+b(1+tan2θ2tanθ)=c
⇒ a(1−tan2θ)+2btanθ=c(1+tan2θ)
α and β are roots then,
⇒ a(1−tan2α)+2btanα=c(1+tan2α) ----- ( 1 )
⇒ a(1−tan2β)+2btanβ=c(1+tan2β) ----- ( 2 )
Subtracting ( 2 ) from ( 1 ),
⇒ a(1−tan2α)+2btanα−[a(1−tan2β)+2btanβ]=c(1+tan2α)−c(1+tan2β)
⇒ −a(tan2α−tan2β)+2b(tanα−tanβ)=c(tan2α−tan2β)
Similar questions