Math, asked by sparks9, 10 months ago

lf alpha and beta are the zero of the quadratic polynomial Rx) =x^2+x-2, find a polynomial whose zeros are 1upon alpha minus 1upon beta

Answers

Answered by amitkumar44481
55

AnsWer :

± 3 / 2.

SolutioN :

We have, Polynomial.

 \tt \dagger \:  \:  \:  \:  \:  {x}^{2}  + x  -  2.

Compare With General Expression.

ax² + bx + c = 0.

Where as,

  • a = 1.
  • b = 1.
  • c = - 2.

\rule{90}2

→ x² + x - 2.

→ x² + 2x - x - 2.

→ x( x + 2 ) - 1( x + 2 )

→ ( x - 1 )( x + 2 )

Either,

→ x - 1 = 0.

→ x = 1.

Or,

→ x + 2 = 0.

→ x = - 2.

Sum of Zeros.

 \tt \dagger \:  \:  \:  \:  \:  \alpha  +  \beta  =  \dfrac{ - b}{a}

→ - b / a.

→ - 1.

Product Of Zeros.

 \tt \dagger \:  \:  \:  \:  \:  \alpha   \beta  =  \dfrac{ c}{a}

→ c / a.

→ - 2.

★ Now, Let's Find.

 \tt \dashrightarrow  \dfrac{1}{ \alpha }  -  \dfrac{1}{ \beta }

 \tt \dashrightarrow  \dfrac{ \alpha  -  \beta }{ \alpha \beta  }

#We know,

  • ( a - b )² = ( a + b )² - 4ab

 \tt \dashrightarrow  \dfrac{ {\alpha  -  \beta }^2}{ \alpha \beta  }

 \tt \dashrightarrow  \dfrac{{ \alpha  + \beta }^2- 4\alpha \beta  }{ \alpha \beta  }

 \tt \dashrightarrow  \dfrac{ 1 - 4( -2 )}{  - 2 }

 \tt \dashrightarrow  \dfrac{ 1 + 8}{  - 2 }

 \tt \dashrightarrow  \dfrac{ 9}{  - 2 }

 \tt \dashrightarrow  \dfrac{  \alpha -\beta = \pm3}{  - 2 }

 \tt \dashrightarrow  \dfrac{ \pm 3}{  - 2 }

 \tt \dashrightarrow  \pm \dfrac{ 3}{2 }

Therefore, the required answer is ± 3 / 2.

Answered by POPTRONGAMERX
10

Answer:

x²-3x+2=0

=x²-x-2x+2=0

=x(x-1)-2(x-1)=0

(x-1)(x-2)=0x=1

or ,

x=2 given zeroes of quadratic polynomial 1/2alpha+beta

1/2beta+alpha substitute=1/2(1)+2

1/2(2)+1=1/4

1/5formula is x²-(alpha+beta)x+alpha*beta =0therefore x²-

(1/4+1/5)x+1/4*1/5=0=ans is 20x^2 - 9x +1 =0

Similar questions