Math, asked by yaksirirupa, 5 months ago

lf n is an integer then show that (1+i) 2n+(1-i) 2n =2n±¹cos npie/2

Answers

Answered by rajeevr06
5

Answer:

1 + i =  \sqrt{2} (cos \frac{\pi}{4}  + i \: sin \frac{\pi}{4} )

1  -  i =  \sqrt{2} (cos \frac{\pi}{4}   -  i \: sin \frac{\pi}{4} )

LHS,

( \sqrt{2} (cos \frac{\pi}{4}  + i \: sin \frac{\pi}{4} )) {}^{2n}  + (\sqrt{2} (cos \frac{\pi}{4}   -  i \: sin \frac{\pi}{4} )) {}^{2n}  =

( \sqrt{2} ) {}^{2n} (cos \frac{2n\pi}{4}  + i \: sin \frac{2n\pi}{4}  + cos \frac{2n\pi}{4}   -  i \: sin \frac{2n\pi}{4} ) =

 {2}^{n}  \times 2 \: cos \frac{n\pi}{2}  =  {2}^{n + 1}  \: cos \frac{n\pi}{2}

Proved

Answered by swaraj2020
0

Answer:

Excellent answer। nice work in above solution

Similar questions