Math, asked by StrongGirl, 9 months ago

lf P is a point lying on x^2/16 + y^2/9 = 1 and A( √7, 0) B(√7, 0) are two points then PA +PB = ?

Attachments:

Answers

Answered by amansharma264
5

ANSWER.

=> PA + PB = 8

EXPLANATION.

 \sf \to \: if \: p \: lying \: on \: equation \:  =  \dfrac{ {x}^{2} }{16}  +  \dfrac{ {y}^{2} }{9}  = 1 \\  \\  \sf \to \: two \: points \: are \:  \: a( \sqrt{7},0) \:  \: and \:  \:  \: b( -  \sqrt{7}  ,0) \: are \: two \:  \: points

 \sf \to \:  {a}^{2}  = 16 \\  \\  \sf \to \:  {b}^{2}  = 9 \\  \\  \sf \to \: formula \: of \: eccentricity \:  \implies \:  {b}^{2}  =  {a}^{2} (1 -  {e}^{2} ) \\  \\  \sf \to \: 9 = 16(1 -  {e}^{2} ) \\  \\  \sf \to \: 9 = 16 - 16 {e}^{2} \\  \\  \sf \to \:  {e}^{2}  =  \dfrac{7}{16} \\  \\  \sf \to \: e \:  =  \frac{ \sqrt{7} }{4}  = answer

 \sf \to \: as \: we \: can \: find \: their \: focus \:  \implies \: (ae,0) \:  \: and \:  \: ( - ae,0) \\  \\  \sf \to \: a \:  = 4 \implies \: (4 \times  \frac{ \sqrt{7} }{4} ,0) \:  \: and \:  \: ( - 4 \times  \frac{ \sqrt{7} }{4} ,0) \\  \\  \sf \to \: focus \:  = ( \sqrt{7} ,0) \:  \:  \: and \:  \:  \: ( -  \sqrt{7} ,0) \\  \\  \sf \to \: pa \:  +  \: pb \:  = length \: of \: major \: axis

 \sf \to \: length \: of \: major \: axis \:  = 2a \:  = 2 \times 4 = 8 \\  \\  \sf \to \: { \underline{option \: (3) \:  \: is \:  \: correct}}

Similar questions