lf tan(A-B)=tanA-tanB/1+tanA tanB then find tan 15°
Answers
Answered by
32
Answer:
2-√3
Step-by-step Explanation:
Given:
tan(A-B) = tanA-tanB/1+tanA tanB
Solution:
tan15°
tan15°= tan(45°-30°)
tan15°= tan45°-tan30°/1+tan45° tan30°
[As tan(A-B) = tanA-tanB/1+tanA tanB]
= (1-1/√3)/1+1×1/√3
= (√3-1)/(√3+1)
= 2-√3
tan15° = 2-√3
Please mark my answer as the Brainliest.
Answered by
270
Step-by-step explanation:
Tan(A-B) = TanA - TanB / 1 + TanA TanB
Tan15° = Tan(60°-45°) = Tan60° - Tan45°/ 1 + Tan60°.Tan45° -------- (1)
Value of Tan60° = √3
Value of Tan45° = 1
Substituting the values of Tan60° and Tan45° in eq.1
= √3- 1 / 1 + √3*1
Tan15°= √3 - 1/1 +√3
Rationalising denominator, we get
Tan15° = √3 - 1/ 1 +√3 x 1 - √3 / 1 -√3
Tan15° = √3 + √3 - 1 - √9 / 1 - √9
= 2√3 - 4 / -2
Tan15° = -(√3 - 2 )
Tan15° = 2 - √3
Similar questions