LF THE DIAGONALS OF A PARALLELOGRAM ARE EQUAL THEN SHOW THAT IT IS A RECTANGLE
Answers
Given: ABCD is a parallelogram and AC = BD
To prove: ABCD is a rectangle
Proof: In Δ ACB and ΔDCB
AB = DC _____ Opposite sides of parallelogram are equal
BC = BC _____ Common side
AC = DB _____ Given
Therefore,
Δ ACB ≅ ΔDCB by S.S.S test
Angle ABC = Angle DCB ______ C.A.C.T
Now,
AB ║ DC _______ Opposite sides of parallelogram are parallel
Therefore,
Angle B + Angle C = 180 degree (Interior angles are supplementary)
Angle B + Angle B = 180
2 Angle B = 180 degree
Angle B = 90 degree
Similarly, we can prove that, Angle A = 90 degree, Angle C = 90 degree and Angle D = 90 degree.
Therefore, ABCD is a rectangle.
(Refer to the attachment for the figure)
Step-by-step explanation:
Gven: In parallelogram ABCD, AC=BD
To prove : Parallelogram ABCD is rectangle.
Proof : in △ACB and △BDA
AC=BD ∣ Given
AB=BA ∣ Common
BC=AD ∣ Opposite sides of the parallelogram ABCD
△ACB ≅△BDA∣SSS Rule
∴∠ABC=∠BAD...(1) CPCT
Again AD ∥ ∣ Opposite sides of parallelogram ABCD
AD ∥BC and the traversal AB intersects them.
∴∠BAD+∠ABC=180∘
...(2) _ Sum of consecutive interior angles on the same side of the transversal is
180∘
From (1) and (2) ,
∠BAD=∠ABC=90∘
∴∠A=90∘
and ∠C=90∘
Parallelogram ABCD is a rectangle.
and ∠C=90∘
Parallelogram ABCD is a rectangle.