Math, asked by ashneetsinghdadiala, 1 month ago

lf (x-iy) 1/3 =a+ib then x/a ​ + y/b ​ =​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: {\bigg(x - iy\bigg)}^{\dfrac{1}{3} }  = a + ib

Cubing both sides, we get

\rm :\longmapsto\:x - iy =  {(a + ib)}^{3}

We know,

\boxed{ \tt{ \:  {(x + y)}^{3} =  {x}^{3} +  {3x}^{2}y +  {3xy}^{2} +  {y}^{3} \: }}

So, using this identity, we get

\rm :\longmapsto\:x - iy =  {a}^{3} + 3 {a}^{2} (ib) + 3a {(ib)}^{2} +  {(ib)}^{3}

\rm :\longmapsto\:x - iy =  {a}^{3} + 3 {a}^{2}bi + 3a {b}^{2} {i}^{2}   +   {i}^{3} {b}^{3}

We know,

\boxed{ \tt{ \:  {i}^{2} \:  =  \:  -  \: 1 \: }} \:  \: and \:  \: \boxed{ \tt{ \:  {i}^{3} \:  =  \:  -  \: i \: }}

So, using these, we get

\rm :\longmapsto\:x - iy =  {a}^{3} + 3 {a}^{2}bi  -  3a {b}^{2} - i{b}^{3}

\rm :\longmapsto\:x - iy =  {a}^{3}  - 3 {ab}^{2} + 3 {a}^{2}bi - i{b}^{3}

\rm :\longmapsto\:x - iy =  a( {a}^{2} -  {3b}^{2})  +ib( 3 {a}^{2}- {b}^{2})

So, On comparing real and Imaginary parts, we get

\rm :\longmapsto\:x = a( {a}^{2} -  {3b}^{2}) -  -  -  - (1)

and

\rm :\longmapsto\:y =  - b( {3a}^{2} -  {b}^{2}) -  -  -  - (2)

Now, Consider

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}

On substituting the values of x and y from equation (1) and equation (2), we get

\rm \:  =  \: \dfrac{a( {a}^{2} -  {3b}^{2})}{a}  - \dfrac{b( {3a}^{2}  -  {b}^{2} )}{b}

\rm \:  =  \:  {a}^{2} -  {3b}^{2} - ( {3a}^{2}  -  {b}^{2})

\rm \:  =  \:  {a}^{2} -  {3b}^{2} - {3a}^{2}  +  {b}^{2}

\rm \:  =  \:  -  {2b}^{2} - {2a}^{2}

\rm \:  =  \:  - 2( {a}^{2} +  {b}^{2})

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{x}{a}  + \dfrac{y}{b} = 2( {a}^{2}+{b}^{2})}}

Similar questions