lfxy< l.tm1· 1 x + tan·y = _____
Answers
Answered by
0
Answer:
Given differential equation is
dx
dy
+
1+x
tany
=(1+x)e
x
secy
⇒
secy
1
dx
dy
+
(1+x)secy
tany
=(1+x)e
x
⇒cosy
dx
dy
+
1+x
siny
=(1+x)e
x
Substitute siny=v⇒cosydy=dv
∴
dx
dv
+
1+x
v
=(1+x)e
x
...(1)
Here, P=
1+x
1
⇒∫Pdx=∫
1+x
1
dx=log(1+x)
∴I.F.=e
log(1+x)
=1+x
Multiplying 1 by I.F., we get (1+x)
dx
dv
+v=(1+x)
2
.e
x
Integrating both sides
(1+x)v=∫(1+x)
2
.e
x
dx+C
⇒siny=(1+x)(e
x
+C)
Similar questions