light of wavelength 400 nm strikes a certain metal which has a photoelectric work function of 2.13ev find out maximum kinetic energy of the photoelectrons
Answers
Given :
- Wavelength = 400 nm
- Work function = 2.13eV
To find :
Maximum Kinetic energy (KE) of photoelectron
Formula used :
Here,
- h = Planck's constant
- c = speed of light
Solution :
Putting given value in above formula, we get;
ANSWER :
Maximum Kinetic energy of photoelectron =
Answer:
mark me as brainlist.
Explanation:
Putting given value in above formula, we get;
\begin{gathered}\sf \implies \: KE_{max} \: = (\dfrac{ \: \: 6.626 \times {10}^{ - 34} \times \: 3 \: \times \: {10}^{8} \: }{400 \times {10}^{ - 9} } \: ) - \: (2.13 \times 1.6 \times {10}^{ - 19} )\\ \\ \sf \implies \: KE_{max} \: = (\dfrac{19.878}{4} \times {10}^{ - 19} ) \: - \: (3.408 \times {10}^{ - 19} ) \\ \\ \sf \implies \: KE_{max} \: = (4.9695 \times {10}^{ - 19} ) - \: (3.408 \times {10}^{ - 19} ) \\ \\ \sf \implies \: KE_{max} \: = (4.9695 \: - \: 3.408) \: \times {10}^{ - 19} \\ \\ \sf \implies \: KE_{max} \: = 1.5651 \: \times \: {10}^{ - 19} \: J \\ \\ \sf \implies \: KE_{max} \: \approx \: 1.57 \times {10 }^{ - 19} \: J\end{gathered}
⟹KE
max
=(
400×10
−9
6.626×10
−34
×3×10
8
)−(2.13×1.6×10
−19
)
⟹KE
max
=(
4
19.878
×10
−19
)−(3.408×10
−19
)
⟹KE
max
=(4.9695×10
−19
)−(3.408×10
−19
)
⟹KE
max
=(4.9695−3.408)×10
−19
⟹KE
max
=1.5651×10
−19
J
⟹KE
max
≈1.57×10
−19
J
ANSWER :
Maximum Kinetic energy of photoelectron = \sf \bold{1.57\: \times 10^{-19}}1.57×10
−19